Project acronym AnonymClassic
Project The Arabic Anonymous in a World Classic
Researcher (PI) Beatrice GRUENDLER
Host Institution (HI) FREIE UNIVERSITAET BERLIN
Call Details Advanced Grant (AdG), SH5, ERC-2016-ADG
Summary AnonymClassic is the first ever comprehensive study of Kalila and Dimna (a book of wisdom in fable form), a text of premodern world literature. Its spread is comparable to that of the Bible, except that it passed from Hinduism and Buddhism via Islam to Christianity. Its Arabic version, produced in the 8th century, when this was the lingua franca of the Near East, became the source of all further translations up to the 19th century. The work’s multilingual history involving circa forty languages has never been systematically studied. The absence of available research has made world literature ignore it, while scholars of Arabic avoided it because of its widely diverging manuscripts, so that the actual shape of the Arabic key version is still in need of investigation. AnonymClassic tests a number of ‘high-risk’ propositions, including three key hypotheses: 1) The anonymous Arabic copyists of Kalila and Dimna are de facto co-authors, 2) their agency is comparable to that of the named medieval translators, and 3) the fluctuation of the Arabic versions is conditioned by the work’s fictional status. AnonymClassic’s methodology relies on a cross-lingual narratological analysis of the Arabic versions and all medieval translations (supported by a synoptic digital edition), which takes precisely the interventions at each stage of transmission (redaction, translation) as its subject. Considering the work’s paths of dissemination from India to Europe, AnonymClassic will challenge the prevalent Western theoretical lens on world literature conceived ‘from above’ with the view ‘from below,’ based on the attested cross-cultural network constituted by its versions. AnonymClassic will introduce a new paradigm of an East-Western literary continuum with Arabic as a cultural bridge. Against the current background of Europe’s diversifying and multicultural society, AnonymClassic purposes to integrate pre-modern Near Eastern literature and culture into our understanding of Global Culture.
Summary
AnonymClassic is the first ever comprehensive study of Kalila and Dimna (a book of wisdom in fable form), a text of premodern world literature. Its spread is comparable to that of the Bible, except that it passed from Hinduism and Buddhism via Islam to Christianity. Its Arabic version, produced in the 8th century, when this was the lingua franca of the Near East, became the source of all further translations up to the 19th century. The work’s multilingual history involving circa forty languages has never been systematically studied. The absence of available research has made world literature ignore it, while scholars of Arabic avoided it because of its widely diverging manuscripts, so that the actual shape of the Arabic key version is still in need of investigation. AnonymClassic tests a number of ‘high-risk’ propositions, including three key hypotheses: 1) The anonymous Arabic copyists of Kalila and Dimna are de facto co-authors, 2) their agency is comparable to that of the named medieval translators, and 3) the fluctuation of the Arabic versions is conditioned by the work’s fictional status. AnonymClassic’s methodology relies on a cross-lingual narratological analysis of the Arabic versions and all medieval translations (supported by a synoptic digital edition), which takes precisely the interventions at each stage of transmission (redaction, translation) as its subject. Considering the work’s paths of dissemination from India to Europe, AnonymClassic will challenge the prevalent Western theoretical lens on world literature conceived ‘from above’ with the view ‘from below,’ based on the attested cross-cultural network constituted by its versions. AnonymClassic will introduce a new paradigm of an East-Western literary continuum with Arabic as a cultural bridge. Against the current background of Europe’s diversifying and multicultural society, AnonymClassic purposes to integrate pre-modern Near Eastern literature and culture into our understanding of Global Culture.
Max ERC Funding
2 435 113 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym APOSITE
Project Apoptotic foci: composition, structure and dynamics
Researcher (PI) Ana GARCIA SAEZ
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Consolidator Grant (CoG), LS3, ERC-2018-COG
Summary Apoptotic cell death is essential for development, immune function or tissue homeostasis, and it is often deregulated in disease. Mitochondrial outer membrane permeabilization (MOMP) is central for apoptosis execution and plays a key role in its inflammatory outcome. Knowing the architecture of the macromolecular machineries mediating MOMP is crucial for understanding their function and for the clinical use of apoptosis.
Our recent work reveals that Bax and Bak dimers form distinct line, arc and ring assemblies at specific apoptotic foci to mediate MOMP. However, the molecular structure and mechanisms controlling the spatiotemporal formation and range of action of the apoptotic foci are missing. To address this fundamental gap in our knowledge, we aim to unravel the composition, dynamics and structure of apoptotic foci and to understand how they are integrated to orchestrate function. We will reach this goal by building on our expertise in cell death and cutting-edge imaging and by developing a new analytical pipeline to:
1) Identify the composition of apoptotic foci using in situ proximity-dependent labeling and extraction of near-native Bax/Bak membrane complexes coupled to mass spectrometry.
2) Define their contribution to apoptosis and its immunogenicity and establish their assembly dynamics to correlate it with apoptosis progression by live cell imaging.
3) Determine the stoichiometry and structural organization of the apoptotic foci by combining single molecule fluorescence and advanced electron microscopies.
This multidisciplinary approach offers high chances to solve the long-standing question of how Bax and Bak mediate MOMP. APOSITE will provide textbook knowledge of the mitochondrial contribution to cell death and inflammation. The implementation of this new analytical framework will open novel research avenues in membrane and organelle biology. Ultimately, understanding of Bax and Bak structure/function will help develop apoptosis modulators for medicine.
Summary
Apoptotic cell death is essential for development, immune function or tissue homeostasis, and it is often deregulated in disease. Mitochondrial outer membrane permeabilization (MOMP) is central for apoptosis execution and plays a key role in its inflammatory outcome. Knowing the architecture of the macromolecular machineries mediating MOMP is crucial for understanding their function and for the clinical use of apoptosis.
Our recent work reveals that Bax and Bak dimers form distinct line, arc and ring assemblies at specific apoptotic foci to mediate MOMP. However, the molecular structure and mechanisms controlling the spatiotemporal formation and range of action of the apoptotic foci are missing. To address this fundamental gap in our knowledge, we aim to unravel the composition, dynamics and structure of apoptotic foci and to understand how they are integrated to orchestrate function. We will reach this goal by building on our expertise in cell death and cutting-edge imaging and by developing a new analytical pipeline to:
1) Identify the composition of apoptotic foci using in situ proximity-dependent labeling and extraction of near-native Bax/Bak membrane complexes coupled to mass spectrometry.
2) Define their contribution to apoptosis and its immunogenicity and establish their assembly dynamics to correlate it with apoptosis progression by live cell imaging.
3) Determine the stoichiometry and structural organization of the apoptotic foci by combining single molecule fluorescence and advanced electron microscopies.
This multidisciplinary approach offers high chances to solve the long-standing question of how Bax and Bak mediate MOMP. APOSITE will provide textbook knowledge of the mitochondrial contribution to cell death and inflammation. The implementation of this new analytical framework will open novel research avenues in membrane and organelle biology. Ultimately, understanding of Bax and Bak structure/function will help develop apoptosis modulators for medicine.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym BuddhistRoad
Project Dynamics in Buddhist Networks in Eastern Central Asia, 6th-14th Centuries
Researcher (PI) Carmen Else Maria Angelika MEINERT
Host Institution (HI) RUHR-UNIVERSITAET BOCHUM
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The objective of this proposal is to create a new framework to enable understanding of the complexities in the dynamics of cultural encounter and religious transfer in pre-modern Eastern Central Asia—the vast area extending from the Taklamakan desert to Northeast China. This region was the crossroads of ancient civilisations. Its uniqueness was determined by complex dynamics of religious and cultural exchanges gravitating around an ancient communication artery, known as the Silk Road. Buddhism was one major factor in this exchange; its transfer predetermined the transfer of adjacent aspects of culture. The religious exchange involved a variety of cultures and civilisations, which were modified and shaped by their adoption of Buddhism. This process overrode the ethnic and linguistic boundaries of the Buddhist universe. One specific aspect of this process was the rise of the local forms of Buddhism. This project intends to investigate such Buddhist localisations between the 6th–14th centuries.
I will create a new trans-regional and trans-cultural vision of the religious transfer in Eastern Central Asian history and will reconstruct this Buddhist network with its entities and relations. It will incorporate the fascinating, but as yet under-researched field of Eastern Central Asian Buddhism into a broader research agenda of Comparative Religious Studies. It will establish a new research approach by bringing together many research fields and agendas (such as Philology, Art History, Archaeology, Religious Studies) into one synthesising narrative based on a unique perspective, in which, religious exchange in Eastern Central Asia will be analysed as a dynamic network emerging in its spatial and temporal aspects. For the first time the multi-layered relationships between the trans-regional Buddhist traditions (Chinese, Indian, Tibetan) and those based on local Buddhist cultures (Khotanese, Uyghur, Tangut, Kitan) will be explored in a systematic way.
Summary
The objective of this proposal is to create a new framework to enable understanding of the complexities in the dynamics of cultural encounter and religious transfer in pre-modern Eastern Central Asia—the vast area extending from the Taklamakan desert to Northeast China. This region was the crossroads of ancient civilisations. Its uniqueness was determined by complex dynamics of religious and cultural exchanges gravitating around an ancient communication artery, known as the Silk Road. Buddhism was one major factor in this exchange; its transfer predetermined the transfer of adjacent aspects of culture. The religious exchange involved a variety of cultures and civilisations, which were modified and shaped by their adoption of Buddhism. This process overrode the ethnic and linguistic boundaries of the Buddhist universe. One specific aspect of this process was the rise of the local forms of Buddhism. This project intends to investigate such Buddhist localisations between the 6th–14th centuries.
I will create a new trans-regional and trans-cultural vision of the religious transfer in Eastern Central Asian history and will reconstruct this Buddhist network with its entities and relations. It will incorporate the fascinating, but as yet under-researched field of Eastern Central Asian Buddhism into a broader research agenda of Comparative Religious Studies. It will establish a new research approach by bringing together many research fields and agendas (such as Philology, Art History, Archaeology, Religious Studies) into one synthesising narrative based on a unique perspective, in which, religious exchange in Eastern Central Asia will be analysed as a dynamic network emerging in its spatial and temporal aspects. For the first time the multi-layered relationships between the trans-regional Buddhist traditions (Chinese, Indian, Tibetan) and those based on local Buddhist cultures (Khotanese, Uyghur, Tangut, Kitan) will be explored in a systematic way.
Max ERC Funding
1 998 717 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym C18Signaling
Project Regulation of Cellular Growth and Metabolism by C18:0
Researcher (PI) Aurelio TELEMAN
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Call Details Consolidator Grant (CoG), LS3, ERC-2016-COG
Summary My lab studies how cells regulate their growth and metabolism during normal development and in disease. Recent work in my lab, published last year in Nature, identified the metabolite stearic acid (C18:0) as a novel regulator of mitochondrial function. We showed that dietary C18:0 acts via a novel signaling route whereby it covalently modifies the cell-surface Transferrin Receptor (TfR1) to regulate mitochondrial morphology. We found that modification of TfR1 by C18:0 ('stearoylation') is analogous to protein palmitoylation by C16:0 - it is a covalent thio-ester link and requires a transferase enzyme. This work made two conceptual contributions. 1) It uncovered a novel signaling route regulating mitochondrial function. 2) Relevant to this grant application, we found by mass spectrometry multiple other proteins that are stearoylated in mammalian cells. This thereby opens a new avenue of research, suggesting that C18:0 signals via several target proteins to regulate cellular growth and metabolism. I propose here to study this C18:0 signaling.
To study C18:0 signaling we will exploit tools recently developed in my lab to 1) identify as complete a set as possible of proteins that are stearoylated in human and Drosophila cells, thereby characterizing the cellular 'stearylome', 2) study how stearoylation affects the molecular function of these target proteins, and thereby cellular growth and metabolism, and 3) study how stearoylation is added, and possibly removed, from target proteins.
This work will change the way we view C18:0 from simply being a metabolite to being an important dietary signaling molecule that links nutritional uptake to cellular physiology. Via unknown mechanisms, dietary C18:0 is clinically known to have special properties for cardiovascular risk. Hence this proposal, discovering how C18:0 signals to regulate cells, will have implications for both normal development and for disease.
Summary
My lab studies how cells regulate their growth and metabolism during normal development and in disease. Recent work in my lab, published last year in Nature, identified the metabolite stearic acid (C18:0) as a novel regulator of mitochondrial function. We showed that dietary C18:0 acts via a novel signaling route whereby it covalently modifies the cell-surface Transferrin Receptor (TfR1) to regulate mitochondrial morphology. We found that modification of TfR1 by C18:0 ('stearoylation') is analogous to protein palmitoylation by C16:0 - it is a covalent thio-ester link and requires a transferase enzyme. This work made two conceptual contributions. 1) It uncovered a novel signaling route regulating mitochondrial function. 2) Relevant to this grant application, we found by mass spectrometry multiple other proteins that are stearoylated in mammalian cells. This thereby opens a new avenue of research, suggesting that C18:0 signals via several target proteins to regulate cellular growth and metabolism. I propose here to study this C18:0 signaling.
To study C18:0 signaling we will exploit tools recently developed in my lab to 1) identify as complete a set as possible of proteins that are stearoylated in human and Drosophila cells, thereby characterizing the cellular 'stearylome', 2) study how stearoylation affects the molecular function of these target proteins, and thereby cellular growth and metabolism, and 3) study how stearoylation is added, and possibly removed, from target proteins.
This work will change the way we view C18:0 from simply being a metabolite to being an important dietary signaling molecule that links nutritional uptake to cellular physiology. Via unknown mechanisms, dietary C18:0 is clinically known to have special properties for cardiovascular risk. Hence this proposal, discovering how C18:0 signals to regulate cells, will have implications for both normal development and for disease.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ChaperoneRegulome
Project ChaperoneRegulome: Understanding cell-type-specificity of chaperone regulation
Researcher (PI) Ritwick SAWARKAR
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), LS3, ERC-2018-COG
Summary Protein misfolding causes devastating health conditions such as neurodegeneration. Although the disease-causing protein is widely expressed, its misfolding occurs only in certain cell-types such as neurons. What governs the susceptibility of some tissues to misfolding is a fundamental question with biomedical relevance.
Molecular chaperones help cellular proteins fold into their native conformation. Despite the generality of their function, chaperones are differentially expressed across various tissues. Moreover exposure to misfolding stress changes chaperone expression in a cell-type-dependent manner. Thus cell-type-specific regulation of chaperones is a major determinant of susceptibility to misfolding. The molecular mechanisms governing chaperone levels in different cell-types are not understood, forming the basis of this proposal. We will take a multidisciplinary approach to address two key questions: (1) How are chaperone levels co-ordinated with tissue-specific demands on protein folding? (2) How do different cell-types regulate chaperone genes when exposed to the same misfolding stress?
Cellular chaperone levels and their response to misfolding stress are both driven by transcriptional changes and influenced by chromatin. The proposed work will bring the conceptual, technological and computational advances of chromatin/ transcription field to understand chaperone biology and misfolding diseases. Using in vivo mouse model and in vitro differentiation model, we will investigate molecular mechanisms that control chaperone levels in relevant tissues. Our work will provide insights into functional specialization of chaperones driven by tissue-specific folding demands. We will develop a novel and ambitious approach to assess protein-folding capacity in single cells moving the chaperone field beyond state-of-the-art. Thus by implementing genetic, computational and biochemical approaches, we aim to understand cell-type-specificity of chaperone regulation.
Summary
Protein misfolding causes devastating health conditions such as neurodegeneration. Although the disease-causing protein is widely expressed, its misfolding occurs only in certain cell-types such as neurons. What governs the susceptibility of some tissues to misfolding is a fundamental question with biomedical relevance.
Molecular chaperones help cellular proteins fold into their native conformation. Despite the generality of their function, chaperones are differentially expressed across various tissues. Moreover exposure to misfolding stress changes chaperone expression in a cell-type-dependent manner. Thus cell-type-specific regulation of chaperones is a major determinant of susceptibility to misfolding. The molecular mechanisms governing chaperone levels in different cell-types are not understood, forming the basis of this proposal. We will take a multidisciplinary approach to address two key questions: (1) How are chaperone levels co-ordinated with tissue-specific demands on protein folding? (2) How do different cell-types regulate chaperone genes when exposed to the same misfolding stress?
Cellular chaperone levels and their response to misfolding stress are both driven by transcriptional changes and influenced by chromatin. The proposed work will bring the conceptual, technological and computational advances of chromatin/ transcription field to understand chaperone biology and misfolding diseases. Using in vivo mouse model and in vitro differentiation model, we will investigate molecular mechanisms that control chaperone levels in relevant tissues. Our work will provide insights into functional specialization of chaperones driven by tissue-specific folding demands. We will develop a novel and ambitious approach to assess protein-folding capacity in single cells moving the chaperone field beyond state-of-the-art. Thus by implementing genetic, computational and biochemical approaches, we aim to understand cell-type-specificity of chaperone regulation.
Max ERC Funding
1 992 500 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym CILIARYDISEASE
Project Deciphering mechanisms of ciliary disease
Researcher (PI) Heiko Lickert
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS3, ERC-2009-StG
Summary Ciliopathies are pleiotropic diseases with a wide spectrum of human phenotypes. These include cyst formation in the liver and pancreas, respiratory disorders and a predisposition to diabetes and cancer. The pleiotropic nature of these disorders may reflect the many roles cilia play in physiology and signalling, highlighting the clinical importance of understanding their function in organ development and homeostasis. Despite the biological importance of cilia and decades of research, many aspects of cilia assembly and disassembly remain elusive. The earliest steps of cilia assembly involve conversion of the centrosome into a basal body, which anchors the cilia to the plasma membrane. Odf2 is one of the only proteins known to be important for this process, thus Ofd2 mutant cells lack cilia. During cell cycle re-entry primary cilia disassemble, the basal body dislodges from the plasma membrane and duplicates to serve as the mitotic centrosome. We recently identified Pitchfork, which functions in basal body-to-centrosome conversion and regulates embryonic patterning. The overall aim of this proposal is to better understand the cellular and bio-molecular mechanisms underlying ciliary disease. We will conditionally delete Odf2 and Pitchfork during embryogenesis and organogenesis. This will reveal the different requirements for the process of cilia assembly and disassembly in embryonic development, organ formation and homeostasis. The phenotypes will be analyzed at all levels of complexity. Subcellular imaging and identification of protein interaction partners will uncover the molecular basis of cilia assembly and disassembly. In summary, this project will decipher mechanisms underlying a wide spectrum of human ciliary disease and will open new avenues of clinical research.
Summary
Ciliopathies are pleiotropic diseases with a wide spectrum of human phenotypes. These include cyst formation in the liver and pancreas, respiratory disorders and a predisposition to diabetes and cancer. The pleiotropic nature of these disorders may reflect the many roles cilia play in physiology and signalling, highlighting the clinical importance of understanding their function in organ development and homeostasis. Despite the biological importance of cilia and decades of research, many aspects of cilia assembly and disassembly remain elusive. The earliest steps of cilia assembly involve conversion of the centrosome into a basal body, which anchors the cilia to the plasma membrane. Odf2 is one of the only proteins known to be important for this process, thus Ofd2 mutant cells lack cilia. During cell cycle re-entry primary cilia disassemble, the basal body dislodges from the plasma membrane and duplicates to serve as the mitotic centrosome. We recently identified Pitchfork, which functions in basal body-to-centrosome conversion and regulates embryonic patterning. The overall aim of this proposal is to better understand the cellular and bio-molecular mechanisms underlying ciliary disease. We will conditionally delete Odf2 and Pitchfork during embryogenesis and organogenesis. This will reveal the different requirements for the process of cilia assembly and disassembly in embryonic development, organ formation and homeostasis. The phenotypes will be analyzed at all levels of complexity. Subcellular imaging and identification of protein interaction partners will uncover the molecular basis of cilia assembly and disassembly. In summary, this project will decipher mechanisms underlying a wide spectrum of human ciliary disease and will open new avenues of clinical research.
Max ERC Funding
1 449 640 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym CODE4Vision
Project Computational Dissection of Effective Circuitry and Encoding in the Retina for Normal and Restored Vision
Researcher (PI) Tim Gollisch
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Consolidator Grant (CoG), LS5, ERC-2016-COG
Summary Understanding how neural circuits process and encode information is a fundamental goal in neuroscience. For the neural network of the retina, such knowledge is also of concrete importance for the development of vision restoration therapies for patients suffering from degeneration of photoreceptors. Artificial stimulation of retinal neurons through electronic implants or inserted light-sensitive proteins (“optogenetics”) aims at reconstructing natural transmission of visual information to the brain. Recreating natural retinal activity, however, will require a thorough understanding of the complex and diverse neural code of the retina. The challenge lies in deciphering the various nonlinear operations and dynamics in the around 30 parallel signalling streams that emerge from the retina, represented by as many types of ganglion cells, the retina’s output neurons.
The CODE4Vision project will tackle this challenge by identifying the effective connectivity between the different types of retinal ganglion cells and their excitatory presynaptic partners, bipolar cells, and by determining the features of information processing between these neuronal layers. We will characterize the layout of bipolar cell inputs to large populations of ganglion cells with novel analyses that we derive from computational statistics and machine learning. We will then study the nonlinear and dynamical features of these connections by designing closed-loop experiments that automatically adjust visual stimuli to the identified layout of bipolar cells. These analyses will be supplemented by direct measurements of connections through simultaneous bipolar and ganglion cell recordings. The results will pave the way towards new models of how the retina encodes natural visual stimuli. Finally, we will apply this knowledge to mouse models of optogenetic vision restoration in order to develop stimulation schemes that emulate natural retinal stimulus encoding.
Summary
Understanding how neural circuits process and encode information is a fundamental goal in neuroscience. For the neural network of the retina, such knowledge is also of concrete importance for the development of vision restoration therapies for patients suffering from degeneration of photoreceptors. Artificial stimulation of retinal neurons through electronic implants or inserted light-sensitive proteins (“optogenetics”) aims at reconstructing natural transmission of visual information to the brain. Recreating natural retinal activity, however, will require a thorough understanding of the complex and diverse neural code of the retina. The challenge lies in deciphering the various nonlinear operations and dynamics in the around 30 parallel signalling streams that emerge from the retina, represented by as many types of ganglion cells, the retina’s output neurons.
The CODE4Vision project will tackle this challenge by identifying the effective connectivity between the different types of retinal ganglion cells and their excitatory presynaptic partners, bipolar cells, and by determining the features of information processing between these neuronal layers. We will characterize the layout of bipolar cell inputs to large populations of ganglion cells with novel analyses that we derive from computational statistics and machine learning. We will then study the nonlinear and dynamical features of these connections by designing closed-loop experiments that automatically adjust visual stimuli to the identified layout of bipolar cells. These analyses will be supplemented by direct measurements of connections through simultaneous bipolar and ganglion cell recordings. The results will pave the way towards new models of how the retina encodes natural visual stimuli. Finally, we will apply this knowledge to mouse models of optogenetic vision restoration in order to develop stimulation schemes that emulate natural retinal stimulus encoding.
Max ERC Funding
1 991 445 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym Cosmic_Gas
Project Mapping the Cosmic Gas Supply with ALMA
Researcher (PI) Fabian WALTER
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE9, ERC-2016-ADG
Summary The molecular gas phase is the material in galaxies out of which stars form. As such, it is the quantity that controls the star formation rate of a galaxy, thereby the overall stellar mass build-up, and ultimately galaxy evolution through cosmic times. In contrast to studies of the stellar mass and star formation, characterizing this fuel supply in galaxies as a function of cosmic epoch is still in its infancy. The ALMA facility now redefines our ability to map out the cosmic cold gas supply, essentially unknown at present. This ERC proposal is based on extensive approved observational ALMA programs, led by the PI: ASPECS is the first-ever approved ALMA large (150h) program, aimed at providing a comprehensive view of the baryon cycle from gas to stars over cosmic time. ASPECS will provide 3D molecular scans in two ALMA bands of the Hubble Ultra Deep Field -- the iconic cosmological deep field. A second focus is the detailed characterization of the molecular gas content at z>6 in host galaxies of the most distant quasars via ALMA. This will assess the role of cold gas in the build-up of the first (t_Universe < 1 Gyr) massive cosmic structures in the Universe, again through significant approved ALMA programs led by the PI’s group. The studies outlined here will fully capitalize on the unparalleled capabilities of ALMA to map out the cosmic gas supply through cosmic history, and will provide crucial insights to define observational strategies for JWST (the PI is member of the European JWST/MIRI science team). Through his track record, past achievements in the field of galaxy evolution studies, and through the available proprietary data, the PI is uniquely positioned to lead this ambitious program, which will define the global state-of-the-art in cosmological galaxy evolution through high-redshift ISM studies.
Summary
The molecular gas phase is the material in galaxies out of which stars form. As such, it is the quantity that controls the star formation rate of a galaxy, thereby the overall stellar mass build-up, and ultimately galaxy evolution through cosmic times. In contrast to studies of the stellar mass and star formation, characterizing this fuel supply in galaxies as a function of cosmic epoch is still in its infancy. The ALMA facility now redefines our ability to map out the cosmic cold gas supply, essentially unknown at present. This ERC proposal is based on extensive approved observational ALMA programs, led by the PI: ASPECS is the first-ever approved ALMA large (150h) program, aimed at providing a comprehensive view of the baryon cycle from gas to stars over cosmic time. ASPECS will provide 3D molecular scans in two ALMA bands of the Hubble Ultra Deep Field -- the iconic cosmological deep field. A second focus is the detailed characterization of the molecular gas content at z>6 in host galaxies of the most distant quasars via ALMA. This will assess the role of cold gas in the build-up of the first (t_Universe < 1 Gyr) massive cosmic structures in the Universe, again through significant approved ALMA programs led by the PI’s group. The studies outlined here will fully capitalize on the unparalleled capabilities of ALMA to map out the cosmic gas supply through cosmic history, and will provide crucial insights to define observational strategies for JWST (the PI is member of the European JWST/MIRI science team). Through his track record, past achievements in the field of galaxy evolution studies, and through the available proprietary data, the PI is uniquely positioned to lead this ambitious program, which will define the global state-of-the-art in cosmological galaxy evolution through high-redshift ISM studies.
Max ERC Funding
2 457 500 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym DeepLight
Project Deep imaging with time-reversed light
Researcher (PI) Benjamin JUDKEWITZ
Host Institution (HI) CHARITE - UNIVERSITAETSMEDIZIN BERLIN
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Microscopy enabled the birth of modern neuroscience, by allowing Ramón y Cajal to formulate the neuron doctrine. Since then, remarkable advances in optical resolution, speed and probe development allowed scientists to study the function of neuronal circuits with ever increasing detail – with one critical limitation: No conventional microscope can focus light deeper into intact tissue than a fraction of a mm. This leaves 90% of the intact rodent brain and over 99% of the intact primate brain inaccessible. As a result, the deepest layers of the neocortex and nearly all subcortical structures are currently outside the reach of non-invasive microscopy, representing a fundamental barrier towards further progress in understanding the brain.
Existing fluorescence microscopy techniques, such as confocal and two-photon microscopy, attempt to image deeper by rejecting scattered light or by selecting non-scattered (ballistic) photons for focusing. However, beyond depths of several hundred µm this approach becomes futile because hardly any ballistic photons remain.
We recently achieved two breakthroughs by turning this strategy upside down and focusing with scattered photons: First, we developed a new approach for fluorescence microscopy that uses a process called optical time reversal, with which we achieved an unprecedented imaging depth of 2.5 mm in ex vivo tissue. Second, we discovered a correlational structure of scattered light, which can be exploited for deep tissue imaging.
Still, fundamental challenges remain for in vivo imaging. The goal of this proposal is to break the depth barrier of microscopy and investigate previously unreachable areas of the live brain, by harnessing optical time reversal and scattering correlations. We will demonstrate the power of this approach in layer 6b, the deepest and least understood layer of the mammalian neocortex. This project will thus enable functional imaging of neuronal circuitry at depths that have until now been inaccessible.
Summary
Microscopy enabled the birth of modern neuroscience, by allowing Ramón y Cajal to formulate the neuron doctrine. Since then, remarkable advances in optical resolution, speed and probe development allowed scientists to study the function of neuronal circuits with ever increasing detail – with one critical limitation: No conventional microscope can focus light deeper into intact tissue than a fraction of a mm. This leaves 90% of the intact rodent brain and over 99% of the intact primate brain inaccessible. As a result, the deepest layers of the neocortex and nearly all subcortical structures are currently outside the reach of non-invasive microscopy, representing a fundamental barrier towards further progress in understanding the brain.
Existing fluorescence microscopy techniques, such as confocal and two-photon microscopy, attempt to image deeper by rejecting scattered light or by selecting non-scattered (ballistic) photons for focusing. However, beyond depths of several hundred µm this approach becomes futile because hardly any ballistic photons remain.
We recently achieved two breakthroughs by turning this strategy upside down and focusing with scattered photons: First, we developed a new approach for fluorescence microscopy that uses a process called optical time reversal, with which we achieved an unprecedented imaging depth of 2.5 mm in ex vivo tissue. Second, we discovered a correlational structure of scattered light, which can be exploited for deep tissue imaging.
Still, fundamental challenges remain for in vivo imaging. The goal of this proposal is to break the depth barrier of microscopy and investigate previously unreachable areas of the live brain, by harnessing optical time reversal and scattering correlations. We will demonstrate the power of this approach in layer 6b, the deepest and least understood layer of the mammalian neocortex. This project will thus enable functional imaging of neuronal circuitry at depths that have until now been inaccessible.
Max ERC Funding
1 491 235 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym DissectingSociety
Project Nineteenth-Century Sociographic Journalism and the Formation of Ethnographic and Sociological Knowledge
Researcher (PI) Christiane SCHWAB
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary This project enacts cutting-edge perspectives on the multigenre history of sociological and anthropological reasoning. It represents the first comprehensive study to investigate pieces of nineteenth-century sociographic journalism as formative frames/catalysts of social knowledge and science. These social sketches (often referred to as panoramic literature) provide rich ethnographic micro-analysis and often relate to debates held by statisticians, moralists, folklorists, and ethnologists. However, in the discipline-oriented histories of the social sciences and humanities, journalism has been ignored as a form of knowledge and as a founding genre of modern (disciplinary, academic) social science. By exploring the epistemic significance of sociographic journalism, the project promises to institute a cross-genre, transdisciplinary, and transnational historiography of the evolution of social knowledge and to revise mono-disciplinary and Eurocentric tales of the past and present.
The project has five kinds of outcome: a series of essays, a conference, a public exhibition, a volume, and two monographs. The corpus comprises social sketches and examples of related knowledge frames (travel accounts, philanthropic reports, caricatures etc.) from Western Europe, the German-speaking countries, and (post-)colonial Latin America. The project develops an innovative mix of anthropological/historiographical approaches to examine (1) the representational techniques of sociographic journalism (e.g., methods of constructing social types, the influence of scientific paradigms); (2) how it connects with epistemic developments (e.g., towards materialist and historicizing conceptions of society); (3) its embeddedness in socio-spatial settings and its relations to academic, artistic, and governmental projects; and (4) how the journalistic sketches are to be situated against processes of urbanization, cultural transfer, nation-building, and the institutionalization of academic disciplines.
Summary
This project enacts cutting-edge perspectives on the multigenre history of sociological and anthropological reasoning. It represents the first comprehensive study to investigate pieces of nineteenth-century sociographic journalism as formative frames/catalysts of social knowledge and science. These social sketches (often referred to as panoramic literature) provide rich ethnographic micro-analysis and often relate to debates held by statisticians, moralists, folklorists, and ethnologists. However, in the discipline-oriented histories of the social sciences and humanities, journalism has been ignored as a form of knowledge and as a founding genre of modern (disciplinary, academic) social science. By exploring the epistemic significance of sociographic journalism, the project promises to institute a cross-genre, transdisciplinary, and transnational historiography of the evolution of social knowledge and to revise mono-disciplinary and Eurocentric tales of the past and present.
The project has five kinds of outcome: a series of essays, a conference, a public exhibition, a volume, and two monographs. The corpus comprises social sketches and examples of related knowledge frames (travel accounts, philanthropic reports, caricatures etc.) from Western Europe, the German-speaking countries, and (post-)colonial Latin America. The project develops an innovative mix of anthropological/historiographical approaches to examine (1) the representational techniques of sociographic journalism (e.g., methods of constructing social types, the influence of scientific paradigms); (2) how it connects with epistemic developments (e.g., towards materialist and historicizing conceptions of society); (3) its embeddedness in socio-spatial settings and its relations to academic, artistic, and governmental projects; and (4) how the journalistic sketches are to be situated against processes of urbanization, cultural transfer, nation-building, and the institutionalization of academic disciplines.
Max ERC Funding
1 477 125 €
Duration
Start date: 2020-05-01, End date: 2025-04-30