Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 5D Heart Patch
Project A Functional, Mature In vivo Human Ventricular Muscle Patch for Cardiomyopathy
Researcher (PI) Kenneth Randall Chien
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Summary
Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Max ERC Funding
2 149 228 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym AB-SWITCH
Project Evaluation of commercial potential of a low-cost kit based on DNA-nanoswitches for the single-step measurement of diagnostic antibodies
Researcher (PI) Francesco RICCI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary "Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Summary
"Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Max ERC Funding
150 000 €
Duration
Start date: 2017-02-01, End date: 2018-07-31
Project acronym ACCELERATES
Project Acceleration in Extreme Shocks: from the microphysics to laboratory and astrophysics scenarios
Researcher (PI) Luis Miguel De Oliveira E Silva
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Advanced Grant (AdG), PE2, ERC-2010-AdG_20100224
Summary What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Summary
What is the origin of cosmic rays, what are the dominant acceleration mechanisms in relativistic shocks, how do cosmic rays self-consistently influence the shock dynamics, how are relativistic collisionless shocks formed are longstanding scientific questions, closely tied to extreme plasma physics processes, and where a close interplay between the micro-instabilities and the global dynamics is critical.
Relativistic shocks are closely connected with the propagation of intense streams of particles pervasive in many astrophysical scenarios. The possibility of exciting shocks in the laboratory will also be available very soon with multi-PW lasers or intense relativistic particle beams.
Computational modeling is now established as a prominent research tool, by enabling the fully kinetic modeling of these systems for the first time. With the fast paced developments in high performance computing, the time is ripe for a focused research programme on simulation-based studies of relativistic shocks. This proposal therefore focuses on using self-consistent ab initio massively parallel simulations to study the physics of relativistic shocks, bridging the gap between the multidimensional microphysics of shock onset, formation, and propagation and the global system dynamics. Particular focus will be given to the shock acceleration mechanisms and the radiation signatures of the various physical processes, with the goal of solving some of the central questions in plasma/relativistic phenomena in astrophysics and in the laboratory, and opening new avenues between theoretical/massive computational studies, laboratory experiments and astrophysical observations.
Max ERC Funding
1 588 800 €
Duration
Start date: 2011-06-01, End date: 2016-07-31
Project acronym ADDICTIONCIRCUITS
Project Drug addiction: molecular changes in reward and aversion circuits
Researcher (PI) Nils David Engblom
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Summary
Our affective and motivational state is important for our decisions, actions and quality of life. Many pathological conditions affect this state. For example, addictive drugs are hyperactivating the reward system and trigger a strong motivation for continued drug intake, whereas many somatic and psychiatric diseases lead to an aversive state, characterized by loss of motivation. I will study specific neural circuits and mechanisms underlying reward and aversion, and how pathological signaling in these systems can trigger relapse in drug addiction.
Given the important role of the dopaminergic neurons in the midbrain for many aspects of reward signaling, I will study how synaptic plasticity in these cells, and in their target neurons in the striatum, contribute to relapse in drug seeking. I will also study the circuits underlying aversion. Little is known about these circuits, but my hypothesis is that an important component of aversion is signaled by a specific neuronal population in the brainstem parabrachial nucleus, projecting to the central amygdala. We will test this hypothesis and also determine how this aversion circuit contributes to the persistence of addiction and to relapse.
To dissect this complicated system, I am developing new genetic methods for manipulating and visualizing specific functional circuits in the mouse brain. My unique combination of state-of-the-art competence in transgenics and cutting edge knowledge in the anatomy and functional organization of the circuits behind reward and aversion should allow me to decode these systems, linking discrete circuits to behavior.
Collectively, the results will indicate how signals encoding aversion and reward are integrated to control addictive behavior and they may identify novel avenues for treatment of drug addiction as well as aversion-related symptoms affecting patients with chronic inflammatory conditions and cancer.
Max ERC Funding
1 500 000 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym AEROSPACEPHYS
Project Multiphysics models and simulations for reacting and plasma flows applied to the space exploration program
Researcher (PI) Thierry Edouard Bertrand Magin
Host Institution (HI) INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Summary
Space exploration is one of boldest and most exciting endeavors that humanity has undertaken, and it holds enormous promise for the future. Our next challenges for the spatial conquest include bringing back samples to Earth by means of robotic missions and continuing the manned exploration program, which aims at sending human beings to Mars and bring them home safely. Inaccurate prediction of the heat-flux to the surface of the spacecraft heat shield can be fatal for the crew or the success of a robotic mission. This quantity is estimated during the design phase. An accurate prediction is a particularly complex task, regarding modelling of the following phenomena that are potential “mission killers:” 1) Radiation of the plasma in the shock layer, 2) Complex surface chemistry on the thermal protection material, 3) Flow transition from laminar to turbulent. Our poor understanding of the coupled mechanisms of radiation, ablation, and transition leads to the difficulties in flux prediction. To avoid failure and ensure safety of the astronauts and payload, engineers resort to “safety factors” to determine the thickness of the heat shield, at the expense of the mass of embarked payload. Thinking out of the box and basic research are thus necessary for advancements of the models that will better define the environment and requirements for the design and safe operation of tomorrow’s space vehicles and planetary probes for the manned space exploration. The three basic ingredients for predictive science are: 1) Physico-chemical models, 2) Computational methods, 3) Experimental data. We propose to follow a complementary approach for prediction. The proposed research aims at: “Integrating new advanced physico-chemical models and computational methods, based on a multidisciplinary approach developed together with physicists, chemists, and applied mathematicians, to create a top-notch multiphysics and multiscale numerical platform for simulations of planetary atmosphere entries, crucial to the new challenges of the manned space exploration program. Experimental data will also be used for validation, following state-of-the-art uncertainty quantification methods.”
Max ERC Funding
1 494 892 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym AFRODITE
Project Advanced Fluid Research On Drag reduction In Turbulence Experiments
Researcher (PI) Jens Henrik Mikael Fransson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Summary
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Max ERC Funding
1 418 399 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym AGINGSEXDIFF
Project Aging Differently: Understanding Sex Differences in Reproductive, Demographic and Functional Senescence
Researcher (PI) Alexei Maklakov
Host Institution (HI) Uppsala University
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Summary
Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Max ERC Funding
1 391 904 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym AISENS
Project New generation of high sensitive atom interferometers
Researcher (PI) Marco Fattori
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Summary
Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Max ERC Funding
1 068 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Summary
The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30