Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Country Italy
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2023-08-31
Project acronym 3DBIOLUNG
Project Bioengineering lung tissue using extracellular matrix based 3D bioprinting
Researcher (PI) Darcy WAGNER
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Summary
Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Max ERC Funding
1 499 975 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 3DPROTEINPUZZLES
Project Shape-directed protein assembly design
Researcher (PI) Lars Ingemar ANDRe
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Consolidator Grant (CoG), LS9, ERC-2017-COG
Summary Large protein complexes carry out some of the most complex functions in biology. Such structures are often assembled spontaneously from individual components through the process of self-assembly. If self-assembled protein complexes could be engineered from first principle it would enable a wide range of applications in biomedicine, nanotechnology and materials science. Recently, approaches to rationally design proteins to self-assembly into predefined structures have emerged. The highlight of this work is the design of protein cages that may be engineered into protein containers. However, current approaches for self-assembly design does not result in the assemblies with the required structural complexity to encode many of the sophisticated functions found in nature. To move forward, we have to learn how to engineer protein subunits with more than one designed interface that can assemble into tightly interacting complexes. In this proposal we propose a new protein design paradigm, shape directed protein design, in order to address shortcomings of the current methodology. The proposed method combines geometric shape matching and computational protein design. Using this approach we will de novo design assemblies with a wide variety of structural states, including protein complexes with cyclic and dihedral symmetry as well as icosahedral protein capsids built from novel protein building blocks. To enable these two design challenges we also develop a high-throughput assay to measure assembly stability in vivo that builds on a three-color fluorescent assay. This method will not only facilitate the screening of orders of magnitude more design constructs, but also enable the application of directed evolution to experimentally improve stable and assembly properties of designed containers as well as other designed assemblies.
Summary
Large protein complexes carry out some of the most complex functions in biology. Such structures are often assembled spontaneously from individual components through the process of self-assembly. If self-assembled protein complexes could be engineered from first principle it would enable a wide range of applications in biomedicine, nanotechnology and materials science. Recently, approaches to rationally design proteins to self-assembly into predefined structures have emerged. The highlight of this work is the design of protein cages that may be engineered into protein containers. However, current approaches for self-assembly design does not result in the assemblies with the required structural complexity to encode many of the sophisticated functions found in nature. To move forward, we have to learn how to engineer protein subunits with more than one designed interface that can assemble into tightly interacting complexes. In this proposal we propose a new protein design paradigm, shape directed protein design, in order to address shortcomings of the current methodology. The proposed method combines geometric shape matching and computational protein design. Using this approach we will de novo design assemblies with a wide variety of structural states, including protein complexes with cyclic and dihedral symmetry as well as icosahedral protein capsids built from novel protein building blocks. To enable these two design challenges we also develop a high-throughput assay to measure assembly stability in vivo that builds on a three-color fluorescent assay. This method will not only facilitate the screening of orders of magnitude more design constructs, but also enable the application of directed evolution to experimentally improve stable and assembly properties of designed containers as well as other designed assemblies.
Max ERC Funding
2 325 292 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym 4DPHOTON
Project Beyond Light Imaging: High-Rate Single-Photon Detection in Four Dimensions
Researcher (PI) Massimiliano FIORINI
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Country Italy
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Summary
Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Max ERC Funding
1 975 000 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym AGEnTh
Project Atomic Gauge and Entanglement Theories
Researcher (PI) Marcello DALMONTE
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Country Italy
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary AGEnTh is an interdisciplinary proposal which aims at theoretically investigating atomic many-body systems (cold atoms and trapped ions) in close connection to concepts from quantum information, condensed matter, and high energy physics. The main goals of this programme are to:
I) Find to scalable schemes for the measurements of entanglement properties, and in particular entanglement spectra, by proposing a shifting paradigm to access entanglement focused on entanglement Hamiltonians and field theories instead of probing density matrices;
II) Show how atomic gauge theories (including dynamical gauge fields) are ideal candidates for the realization of long-sought, highly-entangled states of matter, in particular topological superconductors supporting parafermion edge modes, and novel classes of quantum spin liquids emerging from clustering;
III) Develop new implementation strategies for the realization of gauge symmetries of paramount importance, such as discrete and SU(N)xSU(2)xU(1) groups, and establish a theoretical framework for the understanding of atomic physics experiments within the light-from-chaos scenario pioneered in particle physics.
These objectives are at the cutting-edge of fundamental science, and represent a coherent effort aimed at underpinning unprecedented regimes of strongly interacting quantum matter by addressing the basic aspects of probing, many-body physics, and implementations. The results are expected to (i) build up and establish qualitatively new synergies between the aforementioned communities, and (ii) stimulate an intense theoretical and experimental activity focused on both entanglement and atomic gauge theories.
In order to achieve those, AGEnTh builds: (1) on my background working at the interface between atomic physics and quantum optics from one side, and many-body theory on the other, and (2) on exploratory studies which I carried out to mitigate the conceptual risks associated with its high-risk/high-gain goals.
Summary
AGEnTh is an interdisciplinary proposal which aims at theoretically investigating atomic many-body systems (cold atoms and trapped ions) in close connection to concepts from quantum information, condensed matter, and high energy physics. The main goals of this programme are to:
I) Find to scalable schemes for the measurements of entanglement properties, and in particular entanglement spectra, by proposing a shifting paradigm to access entanglement focused on entanglement Hamiltonians and field theories instead of probing density matrices;
II) Show how atomic gauge theories (including dynamical gauge fields) are ideal candidates for the realization of long-sought, highly-entangled states of matter, in particular topological superconductors supporting parafermion edge modes, and novel classes of quantum spin liquids emerging from clustering;
III) Develop new implementation strategies for the realization of gauge symmetries of paramount importance, such as discrete and SU(N)xSU(2)xU(1) groups, and establish a theoretical framework for the understanding of atomic physics experiments within the light-from-chaos scenario pioneered in particle physics.
These objectives are at the cutting-edge of fundamental science, and represent a coherent effort aimed at underpinning unprecedented regimes of strongly interacting quantum matter by addressing the basic aspects of probing, many-body physics, and implementations. The results are expected to (i) build up and establish qualitatively new synergies between the aforementioned communities, and (ii) stimulate an intense theoretical and experimental activity focused on both entanglement and atomic gauge theories.
In order to achieve those, AGEnTh builds: (1) on my background working at the interface between atomic physics and quantum optics from one side, and many-body theory on the other, and (2) on exploratory studies which I carried out to mitigate the conceptual risks associated with its high-risk/high-gain goals.
Max ERC Funding
1 055 317 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ARS
Project Autonomous Robotic Surgery
Researcher (PI) Paolo FIORINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI VERONA
Country Italy
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary The goal of the ARS project is the derivation of a unified framework for the autonomous execution of robotic tasks in challenging environments in which accurate performance and safety are of paramount importance. We have chosen surgery as the research scenario because of its importance, its intrinsic challenges, and the presence of three factors that make this project feasible and timely. In fact, we have recently concluded the I-SUR project demonstrating the feasibility of autonomous surgical actions, we have access to the first big data made available to researchers of clinical robotic surgeries, and we will be able to demonstrate the project results on the high performance surgical robot “da Vinci Research Kit”. The impact of autonomous robots on the workforce is a current subject of discussion, but surgical autonomy will be welcome by the medical personnel, e.g. to carry out simple intervention steps, react faster to unexpected events, or monitor the insurgence of fatigue. The framework for autonomous robotic surgery will include five main research objectives. The first will address the analysis of robotic surgery data set to extract action and knowledge models of the intervention. The second objective will focus on planning, which will consist of instantiating the intervention models to a patient specific anatomy. The third objective will address the design of the hybrid controllers for the discrete and continuous parts of the intervention. The fourth research objective will focus on real time reasoning to assess the intervention state and the overall surgical situation. Finally, the last research objective will address the verification, validation and benchmark of the autonomous surgical robotic capabilities. The research results to be achieved by ARS will contribute to paving the way towards enhancing autonomy and operational capabilities of service robots, with the ambitious goal of bridging the gap between robotic and human task execution capability.
Summary
The goal of the ARS project is the derivation of a unified framework for the autonomous execution of robotic tasks in challenging environments in which accurate performance and safety are of paramount importance. We have chosen surgery as the research scenario because of its importance, its intrinsic challenges, and the presence of three factors that make this project feasible and timely. In fact, we have recently concluded the I-SUR project demonstrating the feasibility of autonomous surgical actions, we have access to the first big data made available to researchers of clinical robotic surgeries, and we will be able to demonstrate the project results on the high performance surgical robot “da Vinci Research Kit”. The impact of autonomous robots on the workforce is a current subject of discussion, but surgical autonomy will be welcome by the medical personnel, e.g. to carry out simple intervention steps, react faster to unexpected events, or monitor the insurgence of fatigue. The framework for autonomous robotic surgery will include five main research objectives. The first will address the analysis of robotic surgery data set to extract action and knowledge models of the intervention. The second objective will focus on planning, which will consist of instantiating the intervention models to a patient specific anatomy. The third objective will address the design of the hybrid controllers for the discrete and continuous parts of the intervention. The fourth research objective will focus on real time reasoning to assess the intervention state and the overall surgical situation. Finally, the last research objective will address the verification, validation and benchmark of the autonomous surgical robotic capabilities. The research results to be achieved by ARS will contribute to paving the way towards enhancing autonomy and operational capabilities of service robots, with the ambitious goal of bridging the gap between robotic and human task execution capability.
Max ERC Funding
2 750 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ARTSILK
Project Novel approaches to the generation of artificial spider silk superfibers
Researcher (PI) Anna RISING
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.
The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.
To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g., Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.
Summary
Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.
The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.
To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g., Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym Asterochronometry
Project Galactic archeology with high temporal resolution
Researcher (PI) Andrea MIGLIO
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Country Italy
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The Milky Way is a complex system, with dynamical and chemical substructures, where several competing processes such as mergers, internal secular evolution, gas accretion and gas flows take place. To study in detail how such a giant spiral galaxy was formed and evolved, we need to reconstruct the sequence of its main formation events with high (~10%) temporal resolution.
Asterochronometry will determine accurate, precise ages for tens of thousands of stars in the Galaxy. We will take an approach distinguished by a number of key aspects including, developing novel star-dating methods that fully utilise the potential of individual pulsation modes, coupled with a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics.
We will then capitalise on opportunities provided by the timely availability of astrometric, spectroscopic, and asteroseismic data to build and data-mine chrono-chemo-dynamical maps of regions of the Milky Way probed by the space missions CoRoT, Kepler, K2, and TESS. We will quantify, by comparison with predictions of chemodynamical models, the relative importance of various processes which play a role in shaping the Galaxy, for example mergers and dynamical processes. We will use chrono-chemical tagging to look for evidence of aggregates, and precise and accurate ages to reconstruct the early star formation history of the Milky Way’s main constituents.
The Asterochronometry project will also provide stringent observational tests of stellar structure and answer some of the long-standing open questions in stellar modelling (e.g. efficiency of transport processes, mass loss on the giant branch, the occurrence of products of coalescence / mass exchange). These tests will improve our ability to determine stellar ages and chemical yields, with wide impact e.g. on the characterisation and ensemble studies of exoplanets, on evolutionary population synthesis, integrated colours and thus ages of galaxies.
Summary
The Milky Way is a complex system, with dynamical and chemical substructures, where several competing processes such as mergers, internal secular evolution, gas accretion and gas flows take place. To study in detail how such a giant spiral galaxy was formed and evolved, we need to reconstruct the sequence of its main formation events with high (~10%) temporal resolution.
Asterochronometry will determine accurate, precise ages for tens of thousands of stars in the Galaxy. We will take an approach distinguished by a number of key aspects including, developing novel star-dating methods that fully utilise the potential of individual pulsation modes, coupled with a careful appraisal of systematic uncertainties on age deriving from our limited understanding of stellar physics.
We will then capitalise on opportunities provided by the timely availability of astrometric, spectroscopic, and asteroseismic data to build and data-mine chrono-chemo-dynamical maps of regions of the Milky Way probed by the space missions CoRoT, Kepler, K2, and TESS. We will quantify, by comparison with predictions of chemodynamical models, the relative importance of various processes which play a role in shaping the Galaxy, for example mergers and dynamical processes. We will use chrono-chemical tagging to look for evidence of aggregates, and precise and accurate ages to reconstruct the early star formation history of the Milky Way’s main constituents.
The Asterochronometry project will also provide stringent observational tests of stellar structure and answer some of the long-standing open questions in stellar modelling (e.g. efficiency of transport processes, mass loss on the giant branch, the occurrence of products of coalescence / mass exchange). These tests will improve our ability to determine stellar ages and chemical yields, with wide impact e.g. on the characterisation and ensemble studies of exoplanets, on evolutionary population synthesis, integrated colours and thus ages of galaxies.
Max ERC Funding
1 958 863 €
Duration
Start date: 2018-04-01, End date: 2023-09-30
Project acronym AUTISMS
Project Decomposing Heterogeneity in Autism Spectrum Disorders
Researcher (PI) Michael LOMBARDO
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Country Italy
Call Details Starting Grant (StG), SH4, ERC-2017-STG
Summary Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Summary
Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. Using multiple ‘big data’ resources that are both ‘broad’ (large sample size) and ‘deep’ (multiple levels of analysis measured within each individual), I will examine how known variables such as sex, early language development, early social preferences, and early intervention treatment response may be important stratification variables that differentiate ASD subgroups at phenotypic, neural systems/circuits, and genomic levels of analysis. In addition to examining known stratification variables, this research program will engage in data-driven discovery via application of advanced unsupervised computational techniques that can highlight novel multivariate distinctions in the data that signal important ASD subgroups. These data-driven approaches may hold promise for discovering novel ASD subgroups at biological and phenotypic levels of analysis that may be valuable for prioritization in future work developing personalized assessment, monitoring, and treatment strategies for subsets of the ASD population. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
Max ERC Funding
1 499 444 €
Duration
Start date: 2018-01-01, End date: 2023-12-31
Project acronym AXION
Project Axions: From Heaven to Earth
Researcher (PI) Frank Wilczek
Host Institution (HI) STOCKHOLMS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Summary
Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Max ERC Funding
2 324 391 €
Duration
Start date: 2017-09-01, End date: 2022-08-31