Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym DARWIN
Project Deep mm-Wave RF-CMOS Integrated Circuits
Researcher (PI) Michel Steyaert
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), PE7, ERC-2008-AdG
Summary Wireless and mobile communication systems have become an important part of our daily environment. Since the introduction of the GSM-network in the early nineties, different wireless applications such as WiFi, Bluetooth, GPS, etc. have been brought into the market. This has become possible due to the high integration of integrated circuits in relatively cheap technologies. Besides the digital signal processing, those wireless applications require complex analog circuits operating at very high frequencies (RF circuits). In the early days these were implemented as discrete components or standalone ICs in expensive technologies such as GaAs, InP and SiGe. Due to the research towards nanometer CMOS technologies, and due to improved RF circuit techniques, RF-CMOS has been introduced since the mid nineties. The intention of this research project is to take the next big leap forward in wireless applications, i.e. the exploration and research, based on the vast RF-CMOS knowledge already existing, towards the Extremely High Frequencies which is above 70 GHz up to 300GHz, with wavelengths close to 1 mm. The research project is a logical evolution of the RF-CMOS research knowledges of the team. For that the "natural evolution" acronym DARWIN (Deep mm-Wave RF CMOS Integrated Circuits (with the M of CMOS inverted (W)) is choosen. Implementing circuit techniques in standard CMOS technologies at those frequencies is again an enormous challenge and will open a lot of new opportunities and applications towards the future due to possibilities in safety monitoring, e.g. collision radar detection for automobiles at 77 GHz, the need for high data-rate telecommunication systems, with capacity of 1-10 Gbps, and imaging for medical and security systems. The goal of the proposed project is to perform the necessary fundamental basic research to be able to implement these 70-300 GHz applications in CMOS technology (45 nm and below).
Summary
Wireless and mobile communication systems have become an important part of our daily environment. Since the introduction of the GSM-network in the early nineties, different wireless applications such as WiFi, Bluetooth, GPS, etc. have been brought into the market. This has become possible due to the high integration of integrated circuits in relatively cheap technologies. Besides the digital signal processing, those wireless applications require complex analog circuits operating at very high frequencies (RF circuits). In the early days these were implemented as discrete components or standalone ICs in expensive technologies such as GaAs, InP and SiGe. Due to the research towards nanometer CMOS technologies, and due to improved RF circuit techniques, RF-CMOS has been introduced since the mid nineties. The intention of this research project is to take the next big leap forward in wireless applications, i.e. the exploration and research, based on the vast RF-CMOS knowledge already existing, towards the Extremely High Frequencies which is above 70 GHz up to 300GHz, with wavelengths close to 1 mm. The research project is a logical evolution of the RF-CMOS research knowledges of the team. For that the "natural evolution" acronym DARWIN (Deep mm-Wave RF CMOS Integrated Circuits (with the M of CMOS inverted (W)) is choosen. Implementing circuit techniques in standard CMOS technologies at those frequencies is again an enormous challenge and will open a lot of new opportunities and applications towards the future due to possibilities in safety monitoring, e.g. collision radar detection for automobiles at 77 GHz, the need for high data-rate telecommunication systems, with capacity of 1-10 Gbps, and imaging for medical and security systems. The goal of the proposed project is to perform the necessary fundamental basic research to be able to implement these 70-300 GHz applications in CMOS technology (45 nm and below).
Max ERC Funding
2 042 640 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym DRY-2-DRY
Project Do droughts self-propagate and self-intensify?
Researcher (PI) Diego González Miralles
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary Droughts cause agricultural loss, forest mortality and drinking water scarcity. Their predicted increase in recurrence and intensity poses serious threats to future global food security. Several historically unprecedented droughts have already occurred over the last decade in Europe, Australia and the USA. The cost of the ongoing Californian drought is estimated to be about US$3 billion. Still today, the knowledge of how droughts start and evolve remains limited, and so does the understanding of how climate change may affect them.
Positive feedbacks from land have been suggested as critical for the occurrence of recent droughts: as rainfall deficits dry out soil and vegetation, the evaporation of land water is reduced, then the local air becomes too dry to yield rainfall, which further enhances drought conditions. Importantly, this is not just a 'local' feedback, as remote regions may rely on evaporated water transported by winds from the drought-affected region. Following this rationale, droughts self-propagate and self-intensify.
However, a global capacity to observe these processes is lacking. Furthermore, climate and forecast models are immature when it comes to representing the influences of land on rainfall. Do climate models underestimate this land feedback? If so, future drought aggravation will be greater than currently expected. At the moment, this remains largely speculative, given the limited number of studies of these processes.
I propose to use novel in situ and satellite records of soil moisture, evaporation and precipitation, in combination with new mechanistic models that can map water vapour trajectories and explore multi-dimensional feedbacks. DRY-2-DRY will not only advance our fundamental knowledge of the mechanisms triggering droughts, it will also provide independent evidence of the extent to which managing land cover can help 'dampen' drought events, and enable progress towards more accurate short-term and long-term drought forecasts.
Summary
Droughts cause agricultural loss, forest mortality and drinking water scarcity. Their predicted increase in recurrence and intensity poses serious threats to future global food security. Several historically unprecedented droughts have already occurred over the last decade in Europe, Australia and the USA. The cost of the ongoing Californian drought is estimated to be about US$3 billion. Still today, the knowledge of how droughts start and evolve remains limited, and so does the understanding of how climate change may affect them.
Positive feedbacks from land have been suggested as critical for the occurrence of recent droughts: as rainfall deficits dry out soil and vegetation, the evaporation of land water is reduced, then the local air becomes too dry to yield rainfall, which further enhances drought conditions. Importantly, this is not just a 'local' feedback, as remote regions may rely on evaporated water transported by winds from the drought-affected region. Following this rationale, droughts self-propagate and self-intensify.
However, a global capacity to observe these processes is lacking. Furthermore, climate and forecast models are immature when it comes to representing the influences of land on rainfall. Do climate models underestimate this land feedback? If so, future drought aggravation will be greater than currently expected. At the moment, this remains largely speculative, given the limited number of studies of these processes.
I propose to use novel in situ and satellite records of soil moisture, evaporation and precipitation, in combination with new mechanistic models that can map water vapour trajectories and explore multi-dimensional feedbacks. DRY-2-DRY will not only advance our fundamental knowledge of the mechanisms triggering droughts, it will also provide independent evidence of the extent to which managing land cover can help 'dampen' drought events, and enable progress towards more accurate short-term and long-term drought forecasts.
Max ERC Funding
1 465 000 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym EMIS
Project An Intense Summer Monsoon in a Cool World, Climate and East Asian Monsoon during Interglacials with a special emphasis on the Interglacials 500,000 years ago and before
Researcher (PI) André, Léon Berger
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary Asian monsoon is a spectacular occurrence in the climate system. What make it so powerful are the combination of thermal contrast between the World s largest landmass (Eurasian continent) and ocean basin (the Indo-Pacific Ocean) and the presence of the World s largest ridge, the Tibetan Plateau. Climatologically, monsoon regions are the most convectively active areas and account for the majority of global atmospheric heat and moisture transport. Moreover, the economy, culture and rhythms of life of 60% of humanity are critically influenced by the evolution and variability of the Asian monsoon. The need to better understand the monsoon leads inevitably to the close inspection of its activity during the geological times to provide a long-term perspective from which any future change may be more effectively assessed. Our research proposal aims to understand the seeming paradox of the exceptionally intense East Asian summer monsoon (actually the strongest over the last one million years) which occurred during the relatively cool interglacial (MIS-13), 500,000 years ago. This will be done using first a model of intermediate complexity (LOVECLIM) to achieve a number of sensitivity experiments to the astronomical forcing, the Eurasian and North American ice sheets, the Tibetan Plateau and the Ocean. Ocean-atmosphere coupled general circulation models will then be used to confirm the main processes underlined by LOVECLIM, in particular those related to the wave train topographically induced by the Eurasian ice sheet, to the Tibetan Plateau, to the sea-surface temperature and to their role in reinforcing the East Asian summer monsoon. This monsoon of MIS-13 will be compared with the monsoon which occurred during the other interglacials of the upper Pleistocene and Holocene (about the last 700,000 years). All simulation results will be compared with the available proxy records, in particular-but not exclusively-those coming from the loess-soil sequences in China.
Summary
Asian monsoon is a spectacular occurrence in the climate system. What make it so powerful are the combination of thermal contrast between the World s largest landmass (Eurasian continent) and ocean basin (the Indo-Pacific Ocean) and the presence of the World s largest ridge, the Tibetan Plateau. Climatologically, monsoon regions are the most convectively active areas and account for the majority of global atmospheric heat and moisture transport. Moreover, the economy, culture and rhythms of life of 60% of humanity are critically influenced by the evolution and variability of the Asian monsoon. The need to better understand the monsoon leads inevitably to the close inspection of its activity during the geological times to provide a long-term perspective from which any future change may be more effectively assessed. Our research proposal aims to understand the seeming paradox of the exceptionally intense East Asian summer monsoon (actually the strongest over the last one million years) which occurred during the relatively cool interglacial (MIS-13), 500,000 years ago. This will be done using first a model of intermediate complexity (LOVECLIM) to achieve a number of sensitivity experiments to the astronomical forcing, the Eurasian and North American ice sheets, the Tibetan Plateau and the Ocean. Ocean-atmosphere coupled general circulation models will then be used to confirm the main processes underlined by LOVECLIM, in particular those related to the wave train topographically induced by the Eurasian ice sheet, to the Tibetan Plateau, to the sea-surface temperature and to their role in reinforcing the East Asian summer monsoon. This monsoon of MIS-13 will be compared with the monsoon which occurred during the other interglacials of the upper Pleistocene and Holocene (about the last 700,000 years). All simulation results will be compared with the available proxy records, in particular-but not exclusively-those coming from the loess-soil sequences in China.
Max ERC Funding
893 880 €
Duration
Start date: 2008-11-01, End date: 2013-10-31
Project acronym ERQUAF
Project Entanglement and Renormalisation for Quantum Fields
Researcher (PI) Jutho Jan J HAEGEMAN
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary Over the past fifteen years, the paradigm of quantum entanglement has revolutionised the understanding of strongly correlated lattice systems. Entanglement and closely related concepts originating from quantum information theory are optimally suited for quantifying and characterising quantum correlations and have therefore proven instrumental for the classification of the exotic phases discovered in condensed quantum matter. One groundbreaking development originating from this research is a novel class of variational many body wave functions known as tensor network states. Their explicit local structure and unique entanglement features make them very flexible and extremely powerful both as a numerical simulation method and as a theoretical tool.
The goal of this proposal is to lift this “entanglement methodology” into the realm of quantum field theory. In high energy physics, the widespread interest in entanglement has only been triggered recently due to the intriguing connections between entanglement and the structure of spacetime that arise in black hole physics and quantum gravity. During the past few years, direct continuum limits of various tensor network ansätze have been formulated. However, the application thereof is largely unexplored territory and holds promising potential. This proposal formulates several advancements and developments for the theoretical and computational study of continuous quantum systems, gauge theories and exotic quantum phases, but also for establishing the intricate relation between entanglement, renormalisation and geometry in the context of the holographic principle. Ultimately, these developments will radically alter the way in which to approach some of the most challenging questions in physics, ranging from the simulation of cold atom systems to non-equilibrium or high-density situations in quantum chromodynamics and the standard model.
Summary
Over the past fifteen years, the paradigm of quantum entanglement has revolutionised the understanding of strongly correlated lattice systems. Entanglement and closely related concepts originating from quantum information theory are optimally suited for quantifying and characterising quantum correlations and have therefore proven instrumental for the classification of the exotic phases discovered in condensed quantum matter. One groundbreaking development originating from this research is a novel class of variational many body wave functions known as tensor network states. Their explicit local structure and unique entanglement features make them very flexible and extremely powerful both as a numerical simulation method and as a theoretical tool.
The goal of this proposal is to lift this “entanglement methodology” into the realm of quantum field theory. In high energy physics, the widespread interest in entanglement has only been triggered recently due to the intriguing connections between entanglement and the structure of spacetime that arise in black hole physics and quantum gravity. During the past few years, direct continuum limits of various tensor network ansätze have been formulated. However, the application thereof is largely unexplored territory and holds promising potential. This proposal formulates several advancements and developments for the theoretical and computational study of continuous quantum systems, gauge theories and exotic quantum phases, but also for establishing the intricate relation between entanglement, renormalisation and geometry in the context of the holographic principle. Ultimately, these developments will radically alter the way in which to approach some of the most challenging questions in physics, ranging from the simulation of cold atom systems to non-equilibrium or high-density situations in quantum chromodynamics and the standard model.
Max ERC Funding
1 499 375 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym FLICs
Project Enabling flexible integrated circuits and applications
Researcher (PI) Kris Jef Ria Myny
Host Institution (HI) INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Thin-film transistor technologies are present in many products today that require an active transistor backplane e.g. flat-panel displays and flat-panel photodetector arrays. Unipolar n-type transistors based on amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) as semiconductor is currently the most promising technology for next generation products demanding a high-performant, low power transistor, manufacturable on flexible substrates enabling curved, bendable and even rollable displays. a-IGZO is a wide bandgap material characterized by extremely low off-state leakage currents and electron mobility of ~20 cm2/Vs. IGZO transistors fabricated on flexible substrates will also find their use in applications that require flexible integrated circuits.
The goal of this FLICs proposal is to develop disruptive technology and ground-breaking design innovations with amorphous oxide TFTs on plastic substrates, targeting large scale or very large scale flexible integrated circuits with unprecedented characteristics in terms of power consumption, supply voltage and operating speed, for applications in IoT and wearable healthcare sensor patches.
We introduce a new logic style, “quasi-CMOS”, which is based on unipolar, oxide dual-gate thin-film transistors. This logic style will drastically decrease the power consumption of unipolar logic gates in a novel way by taking advantage of dynamic backgate driving and of the transistor’s unique low off-state leakage current, without compromising on switching speed. In addition, we also introduce downscaling of the transistor’s dimensions, while remaining compatible with upscaling to large-area manufacturing platforms. Finally, we will investigate novel ultralow-power design techniques on system-level, while exploiting the quasi-CMOS logic gates.
We will demonstrate the power of this innovation with circuits for item-level Internet-of-Things, UHF RFID, and wearable health sensor patches.
Summary
Thin-film transistor technologies are present in many products today that require an active transistor backplane e.g. flat-panel displays and flat-panel photodetector arrays. Unipolar n-type transistors based on amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) as semiconductor is currently the most promising technology for next generation products demanding a high-performant, low power transistor, manufacturable on flexible substrates enabling curved, bendable and even rollable displays. a-IGZO is a wide bandgap material characterized by extremely low off-state leakage currents and electron mobility of ~20 cm2/Vs. IGZO transistors fabricated on flexible substrates will also find their use in applications that require flexible integrated circuits.
The goal of this FLICs proposal is to develop disruptive technology and ground-breaking design innovations with amorphous oxide TFTs on plastic substrates, targeting large scale or very large scale flexible integrated circuits with unprecedented characteristics in terms of power consumption, supply voltage and operating speed, for applications in IoT and wearable healthcare sensor patches.
We introduce a new logic style, “quasi-CMOS”, which is based on unipolar, oxide dual-gate thin-film transistors. This logic style will drastically decrease the power consumption of unipolar logic gates in a novel way by taking advantage of dynamic backgate driving and of the transistor’s unique low off-state leakage current, without compromising on switching speed. In addition, we also introduce downscaling of the transistor’s dimensions, while remaining compatible with upscaling to large-area manufacturing platforms. Finally, we will investigate novel ultralow-power design techniques on system-level, while exploiting the quasi-CMOS logic gates.
We will demonstrate the power of this innovation with circuits for item-level Internet-of-Things, UHF RFID, and wearable health sensor patches.
Max ERC Funding
1 499 155 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym INTERDIFFUSION
Project Unraveling Interdiffusion Effects at Material Interfaces -- Learning from Tensors of Microstructure Evolution Simulations
Researcher (PI) Nele Marie Moelans
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Multi-materials, combining various materials with different functionalities, are increasingly desired in engineering applications. Reliable material assembly is a great challenge in the development of innovative technologies. The interdiffusion microstructures formed at material interfaces are critical for the performance of the product. However, as more and more elements are involved, their complexity increases and their variety becomes immense. Furthermore, interdiffusion microstructures evolve during processing and in use of the device. Experimental testing of the long-term evolution in assembled devices is extremely time-consuming. The current level of materials models and simulation techniques does not allow in silico (or computer aided) design of multi-component material assemblies, since the parameter space is much too large.
With this project, I aim a break-through in computational materials science, using tensor decomposition techniques emerging in data-analysis to guide efficiently high-throughput interdiffusion microstructure simulation studies. The measurable outcomes aimed at, are
1) a high-performance computing software that allows to compute the effect of a huge number of material and process parameters, sufficiently large for reliable in-silico design of multi-materials, on the interdiffusion microstructure evolution, based on a tractable number of simulations, and
2) decomposed tensor descriptions for important multi-material systems enabling reliable computation of interdiffusion microstructure characteristics using a single computer.
If successful, the outcomes of this project will allow to significantly accelerate the design of innovative multi-materials. My expertise in microstructure simulations and multi-component materials, and access to collaborations with the top experts in tensor decomposition techniques and materials characterization are crucial to reach this ambitious aim.
Summary
Multi-materials, combining various materials with different functionalities, are increasingly desired in engineering applications. Reliable material assembly is a great challenge in the development of innovative technologies. The interdiffusion microstructures formed at material interfaces are critical for the performance of the product. However, as more and more elements are involved, their complexity increases and their variety becomes immense. Furthermore, interdiffusion microstructures evolve during processing and in use of the device. Experimental testing of the long-term evolution in assembled devices is extremely time-consuming. The current level of materials models and simulation techniques does not allow in silico (or computer aided) design of multi-component material assemblies, since the parameter space is much too large.
With this project, I aim a break-through in computational materials science, using tensor decomposition techniques emerging in data-analysis to guide efficiently high-throughput interdiffusion microstructure simulation studies. The measurable outcomes aimed at, are
1) a high-performance computing software that allows to compute the effect of a huge number of material and process parameters, sufficiently large for reliable in-silico design of multi-materials, on the interdiffusion microstructure evolution, based on a tractable number of simulations, and
2) decomposed tensor descriptions for important multi-material systems enabling reliable computation of interdiffusion microstructure characteristics using a single computer.
If successful, the outcomes of this project will allow to significantly accelerate the design of innovative multi-materials. My expertise in microstructure simulations and multi-component materials, and access to collaborations with the top experts in tensor decomposition techniques and materials characterization are crucial to reach this ambitious aim.
Max ERC Funding
1 496 875 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym Load Slice Core
Project Load Slice Core: A Power and Cost-Efficient Microarchitecture for the Future
Researcher (PI) Lieven Eeckhout
Host Institution (HI) UNIVERSITEIT GENT
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary The ideal processor building block is a power and cost-efficient core that can maximize the extraction of memory hierarchy parallelism, a combination that neither traditional in-order nor out-of-order cores provide. We propose the Load Slice Core microarchitecture, a restricted out-of-order engine aimed squarely at extracting memory hierarchy parallelism, which, according to preliminary results, delivers a nearly 8 times higher performance per Watt per euro compared to an out-of-order core.
The overarching objective of this project to fully determine the potential of the Load Slice Core as a key building block for a novel multi-core processor architecture needed in light of both current and future challenges in software and hardware, including variable thread-level parallelism, managed language workloads, the importance of sequential performance, and the quest for significantly improved power and cost efficiency.
We anticipate significant improvement in multi-core performance within the available power budget and cost by combining chip-level dynamism to cope with variable thread-level parallelism along with the inherent power- and cost-efficient Load Slice Core design. If we are able to demonstrate the true value and potential of the Load Slice Core to address future hardware and software challenges, this project will have a long-lasting impact on the microprocessor industry moving forward.
Summary
The ideal processor building block is a power and cost-efficient core that can maximize the extraction of memory hierarchy parallelism, a combination that neither traditional in-order nor out-of-order cores provide. We propose the Load Slice Core microarchitecture, a restricted out-of-order engine aimed squarely at extracting memory hierarchy parallelism, which, according to preliminary results, delivers a nearly 8 times higher performance per Watt per euro compared to an out-of-order core.
The overarching objective of this project to fully determine the potential of the Load Slice Core as a key building block for a novel multi-core processor architecture needed in light of both current and future challenges in software and hardware, including variable thread-level parallelism, managed language workloads, the importance of sequential performance, and the quest for significantly improved power and cost efficiency.
We anticipate significant improvement in multi-core performance within the available power budget and cost by combining chip-level dynamism to cope with variable thread-level parallelism along with the inherent power- and cost-efficient Load Slice Core design. If we are able to demonstrate the true value and potential of the Load Slice Core to address future hardware and software challenges, this project will have a long-lasting impact on the microprocessor industry moving forward.
Max ERC Funding
2 499 500 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym MAZEST
Project M- and Z-estimation in semiparametric statistics : applications in various fields
Researcher (PI) Ingrid Van Keilegom
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The area of semiparametric statistics is, in comparison to the areas of fully parametric or nonparametric statistics, relatively unexplored and still in full development. Semiparametric models offer a valid alternative for purely parametric ones, that are known to be sensitive to incorrect model specification, and completely nonparametric models, which often suffer from lack of precision and power. A drawback of semiparametric models so far is, however, that the development of mathematical properties under these models is often a lot harder than under the other two types of models. The present project tries to solve this difficulty partially, by presenting and applying a general method to prove the asymptotic properties of estimators for a wide spectrum of semiparametric models. The objectives of this project are twofold. On one hand we will apply a general theory developed by Chen, Linton and Van Keilegom (2003) for a class of semiparametric Z-estimation problems, to a number of novel research ideas, coming from a broad range of areas in statistics. On the other hand we will show that some estimation problems are not covered by this theory, we consider a more general class of semiparametric estimators (M-estimators called) and develop a general theory for this class of estimators. This theory will open new horizons for a wide variety of problems in semiparametric statistics. The project requires highly complex mathematical skills and cutting edge results from modern empirical process theory.
Summary
The area of semiparametric statistics is, in comparison to the areas of fully parametric or nonparametric statistics, relatively unexplored and still in full development. Semiparametric models offer a valid alternative for purely parametric ones, that are known to be sensitive to incorrect model specification, and completely nonparametric models, which often suffer from lack of precision and power. A drawback of semiparametric models so far is, however, that the development of mathematical properties under these models is often a lot harder than under the other two types of models. The present project tries to solve this difficulty partially, by presenting and applying a general method to prove the asymptotic properties of estimators for a wide spectrum of semiparametric models. The objectives of this project are twofold. On one hand we will apply a general theory developed by Chen, Linton and Van Keilegom (2003) for a class of semiparametric Z-estimation problems, to a number of novel research ideas, coming from a broad range of areas in statistics. On the other hand we will show that some estimation problems are not covered by this theory, we consider a more general class of semiparametric estimators (M-estimators called) and develop a general theory for this class of estimators. This theory will open new horizons for a wide variety of problems in semiparametric statistics. The project requires highly complex mathematical skills and cutting edge results from modern empirical process theory.
Max ERC Funding
750 000 €
Duration
Start date: 2008-07-01, End date: 2014-06-30
Project acronym NanoCellActivity
Project Nanoscale live-cell activity sensing using smart probes and imaging
Researcher (PI) Peter Robert L. DEDECKER
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Fluorescence microscopy is the tool of choice for live-cell imaging. Its usefulness has been further enhanced by the availability of genetically-encoded biosensors, which enable the visualisation of when and where a certain activity arises. In addition, the development of diffraction-unlimited imaging has dramatically improved the spatial resolution of fluorescence imaging. However, these techniques have had difficulty working with biosensors, largely limiting the information to the spatial location of the labels.
This project seeks to develop diffraction-unlimited imaging of biosensors, creating activity maps with a diffraction-unlimited spatial resolution in living systems. I propose to meet this challenge using a two-pronged approach, focusing both on the development of labels and sensors as well as new imaging tools and strategies. Based on existing scaffolds, we will develop sensors that display strong photochromism, providing reversible fluorescence dynamics intrinsically suited to superresolution imaging. In tandem, we will develop imaging strategies that focus on robustness and work well in living systems, in exchange for a spatial resolution of a 50 to 70 nm and a temporal resolution of a few seconds or less.
We will use these developments in the study of the nanoscale spatiotemporal regulation of G-protein-coupled receptor (GCPR) signalling in living systems. By extending sub-diffraction imaging to the molecular environment, this project will contribute new insights into long-standing research questions that directly involve the health and well-being of all of us, while also enabling exciting prospects for further research.
Summary
Fluorescence microscopy is the tool of choice for live-cell imaging. Its usefulness has been further enhanced by the availability of genetically-encoded biosensors, which enable the visualisation of when and where a certain activity arises. In addition, the development of diffraction-unlimited imaging has dramatically improved the spatial resolution of fluorescence imaging. However, these techniques have had difficulty working with biosensors, largely limiting the information to the spatial location of the labels.
This project seeks to develop diffraction-unlimited imaging of biosensors, creating activity maps with a diffraction-unlimited spatial resolution in living systems. I propose to meet this challenge using a two-pronged approach, focusing both on the development of labels and sensors as well as new imaging tools and strategies. Based on existing scaffolds, we will develop sensors that display strong photochromism, providing reversible fluorescence dynamics intrinsically suited to superresolution imaging. In tandem, we will develop imaging strategies that focus on robustness and work well in living systems, in exchange for a spatial resolution of a 50 to 70 nm and a temporal resolution of a few seconds or less.
We will use these developments in the study of the nanoscale spatiotemporal regulation of G-protein-coupled receptor (GCPR) signalling in living systems. By extending sub-diffraction imaging to the molecular environment, this project will contribute new insights into long-standing research questions that directly involve the health and well-being of all of us, while also enabling exciting prospects for further research.
Max ERC Funding
1 368 250 €
Duration
Start date: 2017-02-01, End date: 2022-01-31