Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ACrossWire
Project A Cross-Correlated Approach to Engineering Nitride Nanowires
Researcher (PI) Hannah Jane JOYCE
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Summary
Nanowires based on group III–nitride semiconductors exhibit outstanding potential for emerging applications in energy-efficient lighting, optoelectronics and solar energy harvesting. Nitride nanowires, tailored at the nanoscale, should overcome many of the challenges facing conventional planar nitride materials, and also add extraordinary new functionality to these materials. However, progress towards III–nitride nanowire devices has been hampered by the challenges in quantifying nanowire electrical properties using conventional contact-based measurements. Without reliable electrical transport data, it is extremely difficult to optimise nanowire growth and device design. This project aims to overcome this problem through an unconventional approach: advanced contact-free electrical measurements. Contact-free measurements, growth studies, and device studies will be cross-correlated to provide unprecedented insight into the growth mechanisms that govern nanowire electronic properties and ultimately dictate device performance. A key contact-free technique at the heart of this proposal is ultrafast terahertz conductivity spectroscopy: an advanced technique ideal for probing nanowire electrical properties. We will develop new methods to enable the full suite of contact-free (including terahertz, photoluminescence and cathodoluminescence measurements) and contact-based measurements to be performed with high spatial resolution on the same nanowires. This will provide accurate, comprehensive and cross-correlated feedback to guide growth studies and expedite the targeted development of nanowires with specified functionality. We will apply this powerful approach to tailor nanowires as photoelectrodes for solar photoelectrochemical water splitting. This is an application for which nitride nanowires have outstanding, yet unfulfilled, potential. This project will thus harness the true potential of nitride nanowires and bring them to the forefront of 21st century technology.
Max ERC Funding
1 499 195 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym AlgTateGro
Project Constructing line bundles on algebraic varieties -- around conjectures of Tate and Grothendieck
Researcher (PI) Francois CHARLES
Host Institution (HI) UNIVERSITE PARIS-SACLAY
Country France
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Summary
The goal of this project is to investigate two conjectures in arithmetic geometry pertaining to the geometry of projective varieties over finite and number fields. These two conjectures, formulated by Tate and Grothendieck in the 1960s, predict which cohomology classes are chern classes of line bundles. They both form an arithmetic counterpart of a theorem of Lefschetz, proved in the 1940s, which itself is the only known case of the Hodge conjecture. These two long-standing conjectures are one of the aspects of a more general web of questions regarding the topology of algebraic varieties which have been emphasized by Grothendieck and have since had a central role in modern arithmetic geometry. Special cases of these conjectures, appearing for instance in the work of Tate, Deligne, Faltings, Schneider-Lang, Masser-Wüstholz, have all had important consequences.
My goal is to investigate different lines of attack towards these conjectures, building on recent work on myself and Jean-Benoît Bost on related problems. The two main directions of the proposal are as follows. Over finite fields, the Tate conjecture is related to finiteness results for certain cohomological objects. I want to understand how to relate these to hidden boundedness properties of algebraic varieties that have appeared in my recent geometric proof of the Tate conjecture for K3 surfaces. The existence and relevance of a theory of Donaldson invariants for moduli spaces of twisted sheaves over finite fields seems to be a promising and novel direction. Over number fields, I want to combine the geometric insight above with algebraization techniques developed by Bost. In a joint project, we want to investigate how these can be used to first understand geometrically major results in transcendence theory and then attack the Grothendieck period conjecture for divisors via a number-theoretic and complex-analytic understanding of universal vector extensions of abelian schemes over curves.
Max ERC Funding
1 222 329 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym ALLERGUT
Project Mucosal Tolerance and Allergic Predisposition: Does it all start in the gut?
Researcher (PI) Caspar OHNMACHT
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Country Germany
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Summary
Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym APROCS
Project Automated Linear Parameter-Varying Modeling and Control Synthesis for Nonlinear Complex Systems
Researcher (PI) Roland TOTH
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Country Netherlands
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Summary
Linear Parameter-Varying (LPV) systems are flexible mathematical models capable of representing Nonlinear (NL)/Time-Varying (TV) dynamical behaviors of complex physical systems (e.g., wafer scanners, car engines, chemical reactors), often encountered in engineering, via a linear structure. The LPV framework provides computationally efficient and robust approaches to synthesize digital controllers that can ensure desired operation of such systems - making it attractive to (i) high-tech mechatronic, (ii) automotive and (iii) chemical-process applications. Such a framework is important to meet with the increasing operational demands of systems in these industrial sectors and to realize future technological targets. However, recent studies have shown that, to fully exploit the potential of the LPV framework, a number of limiting factors of the underlying theory ask a for serious innovation, as currently it is not understood how to (1) automate exact and low-complexity LPV modeling of real-world applications and how to refine uncertain aspects of these models efficiently by the help of measured data, (2) incorporate control objectives directly into modeling and to develop model reduction approaches for control, and (3) how to see modeling & control synthesis as a unified, closed-loop system synthesis approach directly oriented for the underlying NL/TV system. Furthermore, due to the increasingly cyber-physical nature of applications, (4) control synthesis is needed in a plug & play fashion, where if sub-systems are modified or exchanged, then the control design and the model of the whole system are only incrementally updated. This project aims to surmount Challenges (1)-(4) by establishing an innovative revolution of the LPV framework supported by a software suite and extensive empirical studies on real-world industrial applications; with a potential to ensure a leading role of technological innovation of the EU in the high-impact industrial sectors (i)-(iii).
Max ERC Funding
1 493 561 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym Baby DCs
Project Age-dependent Regulation of Dendritic Cell Development and Function
Researcher (PI) Barbara Ursula SCHRAML
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Early life immune balance is essential for survival and establishment of healthy immunity in later life. We aim to define how age-dependent regulation of dendritic cell (DC) development contributes to this crucial immune balance. DCs are versatile controllers of immunity that in neonates are qualitatively distinct from adults. Why such age-dependent differences exist is unclear but newborn DCs are considered underdeveloped and functionally immature.
Using ontogenetic tracing of conventional DC precursors, I have found a previously unappreciated developmental heterogeneity of DCs that is particularly prominent in young mice. Preliminary data indicate that distinct waves of DC poiesis contribute to the functional differences between neonatal and adult DCs. I hypothesize that the neonatal DC compartment is not immature but rather that DC poiesis is developmentally regulated to create essential age-dependent immune balance. Further, I have identified a unique situation in early life to address a fundamental biological question, namely to what extent cellular function is pre-programmed by developmental origin (nature) versus environmental factors (nurture).
In this proposal, we will first use novel models to fate map the origin of the DC compartment with age. We will then define to what extent cellular origin determines age-dependent functions of DCs in immunity. Using innovative comparative gene expression profiling and integrative epigenomic analysis the cell intrinsic mechanisms regulating the age-dependent functions of DCs will be characterized. Because environmental factors in utero and after birth critically influence immune balance, we will finally define the impact of maternal infection and metabolic disease, as well as early microbial encounter on DC poiesis. Characterizing how developmentally regulated DC poiesis shapes the unique features of early life immunity will provide novel insights into immune development that are vital to advance vaccine strategies.
Summary
Early life immune balance is essential for survival and establishment of healthy immunity in later life. We aim to define how age-dependent regulation of dendritic cell (DC) development contributes to this crucial immune balance. DCs are versatile controllers of immunity that in neonates are qualitatively distinct from adults. Why such age-dependent differences exist is unclear but newborn DCs are considered underdeveloped and functionally immature.
Using ontogenetic tracing of conventional DC precursors, I have found a previously unappreciated developmental heterogeneity of DCs that is particularly prominent in young mice. Preliminary data indicate that distinct waves of DC poiesis contribute to the functional differences between neonatal and adult DCs. I hypothesize that the neonatal DC compartment is not immature but rather that DC poiesis is developmentally regulated to create essential age-dependent immune balance. Further, I have identified a unique situation in early life to address a fundamental biological question, namely to what extent cellular function is pre-programmed by developmental origin (nature) versus environmental factors (nurture).
In this proposal, we will first use novel models to fate map the origin of the DC compartment with age. We will then define to what extent cellular origin determines age-dependent functions of DCs in immunity. Using innovative comparative gene expression profiling and integrative epigenomic analysis the cell intrinsic mechanisms regulating the age-dependent functions of DCs will be characterized. Because environmental factors in utero and after birth critically influence immune balance, we will finally define the impact of maternal infection and metabolic disease, as well as early microbial encounter on DC poiesis. Characterizing how developmentally regulated DC poiesis shapes the unique features of early life immunity will provide novel insights into immune development that are vital to advance vaccine strategies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-06-01, End date: 2023-05-31
Project acronym BabyVir
Project The role of the virome in shaping the gut ecosystem during the first year of life
Researcher (PI) Alexandra Petrovna ZHERNAKOVA
Host Institution (HI) ACADEMISCH ZIEKENHUIS GRONINGEN
Country Netherlands
Call Details Starting Grant (StG), LS8, ERC-2016-STG
Summary The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Summary
The role of intestinal bacteria in human health and disease has been intensively studied; however the viral composition of the microbiome, the virome, remains largely unknown. As many of the viruses are bacteriophages, they are expected to be a major factor shaping the human microbiome. The dynamics of the virome during early life, its interaction with host and environmental factors, is likely to have profound effects on human physiology. Therefore it is extremely timely to study the virome in depth and on a wide scale.
This ERC project aims at understanding how the gut virome develops during the first year of life and how that relates to the composition of the bacterial microbiome. In particular, we will determine which intrinsic and environmental factors, including genetics and the mother’s microbiome and diet, interact with the virome in shaping the early gut microbiome ecosystem. In a longitudinal study of 1,000 newborns followed at 7 time points from birth till age 12 months, I will investigate: (1) the composition and evolution of the virome and bacterial microbiome in the first year of life; (2) the role of factors coming from the mother and from the host genome on virome and bacterial microbiome development and their co-evolution; and (3) the role of environmental factors, like infectious diseases, vaccinations and diet habits, on establishing the virome and overall microbiome composition during the first year of life.
This project will provide crucial knowledge about composition and maturation of the virome during the first year of life, and its symbiotic relation with the bacterial microbiome. This longitudinal dataset will be instrumental for identification of microbiome markers of diseases and for the follow up analysis of the long-term effect of microbiota maturation later in life. Knowledge of the role of viruses in shaping the microbiota may promote future directions for manipulating the human gut microbiota in health and disease.
Max ERC Funding
1 499 881 €
Duration
Start date: 2017-04-01, End date: 2022-09-30
Project acronym BACCO
Project Bias and Clustering Calculations Optimised: Maximising discovery with galaxy surveys
Researcher (PI) Raul Esteban ANGULO de la Fuente
Host Institution (HI) FUNDACION DONOSTIA INTERNATIONAL PHYSICS CENTER
Country Spain
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Summary
A new generation of galaxy surveys will soon start measuring the spatial distribution of millions of galaxies over a broad range of redshifts, offering an imminent opportunity to discover new physics. A detailed comparison of these measurements with theoretical models of galaxy clustering may reveal a new fundamental particle, a breakdown of General Relativity, or a hint on the nature of cosmic acceleration. Despite a large progress in the analytic treatment of structure formation in recent years, traditional clustering models still suffer from large uncertainties. This limits cosmological analyses to a very restricted range of scales and statistics, which will be one of the main obstacles to reach a comprehensive exploitation of future surveys.
Here I propose to develop a novel simulation--based approach to predict galaxy clustering. Combining recent advances in computational cosmology, from cosmological N--body calculations to physically-motivated galaxy formation models, I will develop a unified framework to directly predict the position and velocity of individual dark matter structures and galaxies as function of cosmological and astrophysical parameters. In this formulation, galaxy clustering will be a prediction of a set of physical assumptions in a given cosmological setting. The new theoretical framework will be flexible, accurate and fast: it will provide predictions for any clustering statistic, down to scales 100 times smaller than in state-of-the-art perturbation--theory--based models, and in less than 1 minute of CPU time. These advances will enable major improvements in future cosmological constraints, which will significantly increase the overall power of future surveys maximising our potential to discover new physics.
Max ERC Funding
1 484 240 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Country Switzerland
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BinCosmos
Project The Impact of Massive Binaries Through Cosmic Time
Researcher (PI) Selma DE MINK
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Country Netherlands
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Summary
Massive stars play many key roles in Astrophysics. As COSMIC ENGINES they transformed the pristine Universe left after the Big Bang into our modern Universe. We use massive stars, their explosions and products as COSMIC PROBES to study the conditions in the distant Universe and the extreme physics inaccessible at earth. Models of massive stars are thus widely applied. A central common assumption is that massive stars are non-rotating single objects, in stark contrast with new data. Recent studies show that majority (70% according to our data) will experience severe interaction with a companion (Sana, de Mink et al. Science 2012).
I propose to conduct the most ambitious and extensive exploration to date of the effects of binarity and rotation on the lives and fates of massive stars to (I) transform our understanding of the complex physical processes and how they operate in the vast parameter space and (II) explore the cosmological implications after calibrating and verifying the models. To achieve this ambitious objective I will use an innovative computational approach that combines the strength of two highly complementary codes and seek direct confrontation with observations to overcome the computational challenges that inhibited previous work.
This timely project will provide the urgent theory framework needed for interpretation and guiding of observing programs with the new facilities (JWST, LSST, aLIGO/VIRGO). Public release of the model grids and code will ensure wide impact of this project. I am in the unique position to successfully lead this project because of my (i) extensive experience modeling the complex physical processes, (ii) leading role in introducing large statistical simulations in the massive star community and (iii) direct involvement in surveys that will be used in this project.
Max ERC Funding
1 926 634 €
Duration
Start date: 2017-09-01, End date: 2022-08-31