Project acronym 1D-Engine
Project 1D-electrons coupled to dissipation: a novel approach for understanding and engineering superconducting materials and devices
Researcher (PI) Adrian KANTIAN
Host Institution (HI) HERIOT-WATT UNIVERSITY
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Summary
Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Max ERC Funding
1 491 013 €
Duration
Start date: 2018-10-01, End date: 2024-03-31
Project acronym 2D-4-CO2
Project DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION INTO vdW HETEROSTRUCTURES FOR ARTIFICIAL PHOTOSYNTHESIS
Researcher (PI) Damien VOIRY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Summary
CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Max ERC Funding
1 499 931 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 2D-PnictoChem
Project Chemistry and Interface Control of Novel 2D-Pnictogen Nanomaterials
Researcher (PI) Gonzalo ABELLAN SAEZ
Host Institution (HI) UNIVERSITAT DE VALENCIA
Country Spain
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary 2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Summary
2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Max ERC Funding
1 499 419 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-Gonzalez
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Country Spain
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2O2ACTIVATION
Project Development of Direct Dehydrogenative Couplings mediated by Dioxygen
Researcher (PI) Frederic William Patureau
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Summary
The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Max ERC Funding
1 489 823 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D-FABRIC
Project 3D Flow Analysis in Bijels Reconfigured for Interfacial Catalysis
Researcher (PI) Martin F. HAASE
Host Institution (HI) UNIVERSITEIT UTRECHT
Country Netherlands
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Summary
The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Max ERC Funding
1 905 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym 3D-FIREFLUC
Project Taming the particle transport in magnetized plasmas via perturbative fields
Researcher (PI) Eleonora VIEZZER
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Country Spain
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Summary
Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Max ERC Funding
1 512 250 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym 3D-FNPWriting
Project Unprecedented spatial control of porosity and functionality in nanoporous membranes through 3D printing and microscopy for polymer writing
Researcher (PI) Annette ANDRIEU-BRUNSEN
Host Institution (HI) TECHNISCHE UNIVERSITAT DARMSTADT
Country Germany
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Summary
Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Max ERC Funding
1 499 844 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Country Norway
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30