Project acronym BRiCPT
Project Basic Research in Cryptographic Protocol Theory
Researcher (PI) Jesper Buus Nielsen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Summary
In cryptographic protocol theory, we consider a situation where a number of entities want to solve some problem over a computer network. Each entity has some secret data it does not want the other entities to learn, yet, they all want to learn something about the common set of data. In an electronic election, they want to know the number of yes-votes without revealing who voted what. For instance, in an electronic auction, they want to find the winner without leaking the bids of the losers.
A main focus of the project is to develop new techniques for solving such protocol problems. We are in particular interested in techniques which can automatically construct a protocol solving a problem given only a description of what the problem is. My focus will be theoretical basic research, but I believe that advancing the theory of secure protocol compilers will have an immense impact on the practice of developing secure protocols for practice.
When one develops complex protocols, it is important to be able to verify their correctness before they are deployed, in particular so, when the purpose of the protocols is to protect information. If and when an error is found and corrected, the sensitive data will possibly already be compromised. Therefore, cryptographic protocol theory develops models of what it means for a protocol to be secure, and techniques for analyzing whether a given protocol is secure or not.
A main focuses of the project is to develop better security models, as existing security models either suffer from the problem that it is possible to prove some protocols secure which are not secure in practice, or they suffer from the problem that it is impossible to prove security of some protocol which are believed to be secure in practice. My focus will again be on theoretical basic research, but I believe that better security models are important for advancing a practice where protocols are verified as secure before deployed.
Max ERC Funding
1 171 019 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym COULOMBUS
Project Electric Currents in Sediment and Soil
Researcher (PI) Lars Peter Nielsen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary "With COULOMBUS I will explore the new electronic world I recently found in marine sediment; a living world featuring transmission of coulombs of electrons over long distances through a grid of unknown origin and composition. This is a great challenge to science, and I will specifically
- Unravel function, expansion, resilience, and microbial engineering of the conductive grid
- Identify microbial and geological processes related to long distance electron transfer today and in the past
- Introduce the electron as a new element in biogeochemical and ecological models.
- Map the range of sediment and soil habitats featuring biogeoelectric currents
Incubations of marine sediment will serve as the “base camp” for the surveys. Here I consistently observe that current sources extending centimetres down deliver electrons for most of the oxygen consumption, and here my array of advanced microsensors and biogeochemical methods works well. My team will record electric currents and biogeochemical changes as we manipulate mechanical, chemical, and biological conditions, thereby getting to an understanding of the interplay between conductors, microorganisms, electron donors, electron acceptors, and minerals. Next we take the methods out in the sea to evaluate biogeoelectricity in situ using robots. Other aquatic environments will also be screened. The ultimate outdoor challenge will come as I lead the team into soils where surface potentials suggest biogeoelectric currents deep down. All observations, experiments, and models will be directed to answer the groundbreaking questions: What physics and microbial engineering can explain long distance electron conductance in nature? How do electric microbial communities evolve and how do they shape element cycling? What signatures of biogeoelectricity are left in the geological record of earth history? If I succeed I will have opened up many new exciting research routes for the followers."
Summary
"With COULOMBUS I will explore the new electronic world I recently found in marine sediment; a living world featuring transmission of coulombs of electrons over long distances through a grid of unknown origin and composition. This is a great challenge to science, and I will specifically
- Unravel function, expansion, resilience, and microbial engineering of the conductive grid
- Identify microbial and geological processes related to long distance electron transfer today and in the past
- Introduce the electron as a new element in biogeochemical and ecological models.
- Map the range of sediment and soil habitats featuring biogeoelectric currents
Incubations of marine sediment will serve as the “base camp” for the surveys. Here I consistently observe that current sources extending centimetres down deliver electrons for most of the oxygen consumption, and here my array of advanced microsensors and biogeochemical methods works well. My team will record electric currents and biogeochemical changes as we manipulate mechanical, chemical, and biological conditions, thereby getting to an understanding of the interplay between conductors, microorganisms, electron donors, electron acceptors, and minerals. Next we take the methods out in the sea to evaluate biogeoelectricity in situ using robots. Other aquatic environments will also be screened. The ultimate outdoor challenge will come as I lead the team into soils where surface potentials suggest biogeoelectric currents deep down. All observations, experiments, and models will be directed to answer the groundbreaking questions: What physics and microbial engineering can explain long distance electron conductance in nature? How do electric microbial communities evolve and how do they shape element cycling? What signatures of biogeoelectricity are left in the geological record of earth history? If I succeed I will have opened up many new exciting research routes for the followers."
Max ERC Funding
2 155 300 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym D-TXM
Project Diffraction Based Transmission X-ray Microscopy
Researcher (PI) Henning Friis Poulsen
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Advanced Grant (AdG), PE5, ERC-2011-ADG_20110209
Summary The aim of this project is to develop a diffraction based transmission X-ray microscope, d-TXM, for non-destructive structural characterization of polycrystalline materials such as metals, ceramics, semiconductors, dust, soil and rocks, and for R&D applications in e.g. the energy-, electronics- and environmental sectors. Uniquely, d-TXM will be able to visualise the grains inside 100 micrometer thick specimens with a spatial resolution of 10-30 nm. Up to a thousand grains may be mapped simultaneously in three dimensions with respect to morphology, phase, orientation and local stress-state. Furthermore, the method will be sufficiently fast to enable the acquisition of 3D movies of the time evolution of the structure in nano-materials and components during synthesis, processing or operation.
During the last decade the applicant pioneered and matured a set of X-ray based methods for 3D studies of polycrystals on the micrometre scale. For this achievement, he is recognized as a worldwide leading figure in X-ray instrumentation for structural materials, situated at a nodal point between materials, X-ray physics, applied mathematics and crystallography. The underlying vision of d-TXM is similar to this past work, but in terms of optics the microscopy approach is radically different and the spatial resolution will be two orders of magnitude better.
In this project, the scientific potential will be demonstrated by means of applications to selected issues in metallurgy. Being able to directly observe the evolution of the individual crystalline elements, our understanding of processes such as plasticity and phase evolution can be greatly enhanced.
Dissemination to other fields will take place via an advisory board of future users and a workshop. Continuity of the project is ensured by the technique being implemented at the European Synchrotron Research Facility.
Summary
The aim of this project is to develop a diffraction based transmission X-ray microscope, d-TXM, for non-destructive structural characterization of polycrystalline materials such as metals, ceramics, semiconductors, dust, soil and rocks, and for R&D applications in e.g. the energy-, electronics- and environmental sectors. Uniquely, d-TXM will be able to visualise the grains inside 100 micrometer thick specimens with a spatial resolution of 10-30 nm. Up to a thousand grains may be mapped simultaneously in three dimensions with respect to morphology, phase, orientation and local stress-state. Furthermore, the method will be sufficiently fast to enable the acquisition of 3D movies of the time evolution of the structure in nano-materials and components during synthesis, processing or operation.
During the last decade the applicant pioneered and matured a set of X-ray based methods for 3D studies of polycrystals on the micrometre scale. For this achievement, he is recognized as a worldwide leading figure in X-ray instrumentation for structural materials, situated at a nodal point between materials, X-ray physics, applied mathematics and crystallography. The underlying vision of d-TXM is similar to this past work, but in terms of optics the microscopy approach is radically different and the spatial resolution will be two orders of magnitude better.
In this project, the scientific potential will be demonstrated by means of applications to selected issues in metallurgy. Being able to directly observe the evolution of the individual crystalline elements, our understanding of processes such as plasticity and phase evolution can be greatly enhanced.
Dissemination to other fields will take place via an advisory board of future users and a workshop. Continuity of the project is ensured by the technique being implemented at the European Synchrotron Research Facility.
Max ERC Funding
2 499 860 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym EGGS
Project The first Galaxies
Researcher (PI) Johan Peter Uldall Fynbo
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE9, ERC-2011-StG_20101014
Summary The goal of this project is to discover the first galaxies that formed after the Big Bang. The astrophysics of galaxy formation is deeply fascinating. From tiny density fluctuations of quantum mechanical nature believed to have formed during an inflationary period a tiny fraction of a second after the Big Bang during structure slowly formed through gravitational collapse. This process is strongly dependent on the nature of the dominant, but unknown form of matter - the dark matter. In the project proposed here I will study the epoch of first galaxy formation and the subsequent few billion years of cosmic evolution using gamma-ray bursts and Lyman-α (Lyα) emitting galaxies as probes. I am the principal investigator on two observational projects utilizing these probes. In the first project, I will over three years starting October 2009 be using the new X-shooter spectrograph on the European Southern Observatory Very Large Telescope to build a sample of ~100 gamma-ray bursts with UV/optical/near-IR spectroscopic follow-up. The objective of this project is to measure primarily metallicities, molecular content, and dust content of the gamma-ray burst host galaxies. I am primarily interested in the redshift range from 9 to 2 corresponding to about 500 million years to 3 billions years after the Big Bang. In the 2nd project we will use the new European Southern Observatory survey telescope VISTA. I am co-PI of the Ultra-VISTA project that over the next 5 years starting December 2009 will create an ultradeep image (about 2000 hr of total integration time) of a piece of sky known as the COSMOS field. I am responsible for the part of the project that will use a narrow-band filter to search for Lyα emitting galaxies at a redshift of 8.8 (corresponding to about 500 million years after the Big Bang) - believed to correspond to the epoch of formation of some of the very first galaxies.
Summary
The goal of this project is to discover the first galaxies that formed after the Big Bang. The astrophysics of galaxy formation is deeply fascinating. From tiny density fluctuations of quantum mechanical nature believed to have formed during an inflationary period a tiny fraction of a second after the Big Bang during structure slowly formed through gravitational collapse. This process is strongly dependent on the nature of the dominant, but unknown form of matter - the dark matter. In the project proposed here I will study the epoch of first galaxy formation and the subsequent few billion years of cosmic evolution using gamma-ray bursts and Lyman-α (Lyα) emitting galaxies as probes. I am the principal investigator on two observational projects utilizing these probes. In the first project, I will over three years starting October 2009 be using the new X-shooter spectrograph on the European Southern Observatory Very Large Telescope to build a sample of ~100 gamma-ray bursts with UV/optical/near-IR spectroscopic follow-up. The objective of this project is to measure primarily metallicities, molecular content, and dust content of the gamma-ray burst host galaxies. I am primarily interested in the redshift range from 9 to 2 corresponding to about 500 million years to 3 billions years after the Big Bang. In the 2nd project we will use the new European Southern Observatory survey telescope VISTA. I am co-PI of the Ultra-VISTA project that over the next 5 years starting December 2009 will create an ultradeep image (about 2000 hr of total integration time) of a piece of sky known as the COSMOS field. I am responsible for the part of the project that will use a narrow-band filter to search for Lyα emitting galaxies at a redshift of 8.8 (corresponding to about 500 million years after the Big Bang) - believed to correspond to the epoch of formation of some of the very first galaxies.
Max ERC Funding
1 002 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym EQU
Project Exploring the Quantum Universe
Researcher (PI) Jan Ambjørn
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary "One of the main unsolved problems in theoretical physics today is to reconcile the theories of general relativity and quantum mechanics. The starting point of this proposal is a new background-independent theory of quantum gravity, which has been constructed from first principles as a sum over space-time histories and has already passed its first non-trivial tests. The theory can be investigated analytically as well as by Monte Carlo simulations. The aim is to verify that it is a viable theory of quantum gravity. Thus we want to show that it has the correct long-distance behaviour (classical Einstein gravity) and to investigate its short-distance behaviour in detail. We expect new physics to show up at the shortest distances, physics which might help us understand the origin of our universe and why the universe looks the way we observe today."
Summary
"One of the main unsolved problems in theoretical physics today is to reconcile the theories of general relativity and quantum mechanics. The starting point of this proposal is a new background-independent theory of quantum gravity, which has been constructed from first principles as a sum over space-time histories and has already passed its first non-trivial tests. The theory can be investigated analytically as well as by Monte Carlo simulations. The aim is to verify that it is a viable theory of quantum gravity. Thus we want to show that it has the correct long-distance behaviour (classical Einstein gravity) and to investigate its short-distance behaviour in detail. We expect new physics to show up at the shortest distances, physics which might help us understand the origin of our universe and why the universe looks the way we observe today."
Max ERC Funding
2 187 286 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym HD-Tomo
Project High-Definition Tomography
Researcher (PI) Per Christian Hansen
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary In computed tomography we mimic the brain’s ability to synthesize an object’s 3D structure from many projections by solving thousands of equations. Many efficient methods have been developed to do that, and the results can be impressive when the object is illuminated from many angles and the noise is negligible. However, one decisive factor behind the human brain's unrivalled success with 3D reconstruction remains to be incorporated into computed tomography: The ability to use prior information – an organized accumulation of experience with other objects in the world. The goal of the project is to accomplish this.
The time is ripe to use the power of state-of-the-art mathematics and scientific computing to develop the enabling mathematical technology for next-generation tomographic reconstruction algorithms that are flexible enough to incorporate a variety of available prior information, and thus achieve major improvements in the details and reliability of high-definition reconstructions – sharper images with reliable details. In contrast to existing approaches our goal is to make it possible to incorporate all available prior information in various forms, by replacing ad-hoc assumptions in the current tomography algorithms with prior-driven data representation models and reconstruction methods.
We will look outside the world of classical tomography and incorporate elements and techniques from related areas, tuned to the particular problems that arise in tomography. While research in tomography is often performed either in the application areas or in specialized mathematical communities, we will create a unique research environment with tight collaborations between all the necessary activities as well as scientific and industrial users of tomography. For the first time we will be able to compute reliable high-definition 3D / 4D reconstructions based on the total amount of prior information, without the reconstructions being deteriorated by algorithmic limitations.
Summary
In computed tomography we mimic the brain’s ability to synthesize an object’s 3D structure from many projections by solving thousands of equations. Many efficient methods have been developed to do that, and the results can be impressive when the object is illuminated from many angles and the noise is negligible. However, one decisive factor behind the human brain's unrivalled success with 3D reconstruction remains to be incorporated into computed tomography: The ability to use prior information – an organized accumulation of experience with other objects in the world. The goal of the project is to accomplish this.
The time is ripe to use the power of state-of-the-art mathematics and scientific computing to develop the enabling mathematical technology for next-generation tomographic reconstruction algorithms that are flexible enough to incorporate a variety of available prior information, and thus achieve major improvements in the details and reliability of high-definition reconstructions – sharper images with reliable details. In contrast to existing approaches our goal is to make it possible to incorporate all available prior information in various forms, by replacing ad-hoc assumptions in the current tomography algorithms with prior-driven data representation models and reconstruction methods.
We will look outside the world of classical tomography and incorporate elements and techniques from related areas, tuned to the particular problems that arise in tomography. While research in tomography is often performed either in the application areas or in specialized mathematical communities, we will create a unique research environment with tight collaborations between all the necessary activities as well as scientific and industrial users of tomography. For the first time we will be able to compute reliable high-definition 3D / 4D reconstructions based on the total amount of prior information, without the reconstructions being deteriorated by algorithmic limitations.
Max ERC Funding
2 159 602 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym INNODYN
Project Integrated Analysis & Design in Nonlinear Dynamics
Researcher (PI) Jakob Søndergaard Jensen
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Imagine lighter and more fuel economic cars with improved crashworthiness that help save lives, aircrafts and wind-turbine blades with significant weight reductions that lead to large savings in material costs and environmental impact, and light but efficient armour that helps to protect against potentially deadly blasts. These are the future perspectives with a new generation of advanced structures and micro-structured materials.
The goal of INNODYN is to bring current design procedures for structures and materials a significant step forward by developing new efficient procedures for integrated analysis and design taking the nonlinear dynamic performance into account. The assessment of nonlinear dynamic effects is essential for fully exploiting the vast potentials of structural and material capabilities, but a focused endeavour is strongly required to develop the methodology required to reach the ambitious goals.
INNODYN will in two interacting work-packages develop the necessary computational analysis and design tools using
1) reduced-order models (WP1) that enable optimization of the overall topology of structures which is today hindered by excessive computational costs when dealing with nonlinear dynamic systems
2) multi-scale models (WP2) that facilitates topological design of the material microstructure including essential nonlinear geometrical effects currently not included in state-of-the-art methods.
The work will be carried out by a research group with two PhD-students and a postdoc, led by a PI with a track-record for original ground-breaking research in analysis and optimization of linear and nonlinear dynamics and hosted by one of the world's leading research groups on topology optimization, the TOPOPT group at the Technical University of Denmark.
Summary
Imagine lighter and more fuel economic cars with improved crashworthiness that help save lives, aircrafts and wind-turbine blades with significant weight reductions that lead to large savings in material costs and environmental impact, and light but efficient armour that helps to protect against potentially deadly blasts. These are the future perspectives with a new generation of advanced structures and micro-structured materials.
The goal of INNODYN is to bring current design procedures for structures and materials a significant step forward by developing new efficient procedures for integrated analysis and design taking the nonlinear dynamic performance into account. The assessment of nonlinear dynamic effects is essential for fully exploiting the vast potentials of structural and material capabilities, but a focused endeavour is strongly required to develop the methodology required to reach the ambitious goals.
INNODYN will in two interacting work-packages develop the necessary computational analysis and design tools using
1) reduced-order models (WP1) that enable optimization of the overall topology of structures which is today hindered by excessive computational costs when dealing with nonlinear dynamic systems
2) multi-scale models (WP2) that facilitates topological design of the material microstructure including essential nonlinear geometrical effects currently not included in state-of-the-art methods.
The work will be carried out by a research group with two PhD-students and a postdoc, led by a PI with a track-record for original ground-breaking research in analysis and optimization of linear and nonlinear dynamics and hosted by one of the world's leading research groups on topology optimization, the TOPOPT group at the Technical University of Denmark.
Max ERC Funding
823 992 €
Duration
Start date: 2012-02-01, End date: 2016-01-31
Project acronym Interface
Project Quantum Optical Interfaces for Atoms and Nano-electro-mechanical Systems
Researcher (PI) Eugene Polzik
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary Quantum interfaces capable of transferring quantum states and generating entanglement between fields and matter are set to play a growing role in the development of science and technology. Development of such interfaces has been a crucial component in quantum information processing and communication. In the past decade quantum interfaces between atoms and optical photons have been extensively explored by a number of leading groups. Quantum state transfer between light and atoms, such as quantum memory and quantum teleportation, entanglement of massive objects, as well as measurements and sensing beyond standard quantum limits have been demonstrated by the group of the PI.
We propose to develop a robust, integrated and scalable atom-light interface and to incorporate it into a hybrid multi-facet quantum network with other relevant quantum systems, such as nano-mechanical oscillators and electronic circuits.
Towards this ambitious goal we will develop room temperature atomic quantum memories in spin protecting micro-cells (mu-cells) and opto-mechanical and electromechanical strongly coupled systems. Interfacing atoms, electronic circuits and nano-mechanical oscillators we will perform ultrasensitive quantum limited field and force measurements and quantum teleportation of states across the range of these systems.
In the fundamental sense, this research program will further broaden the horizons of quantum physics and quantum information processing by expanding it into new and unexplored macroscopic domains.
Summary
Quantum interfaces capable of transferring quantum states and generating entanglement between fields and matter are set to play a growing role in the development of science and technology. Development of such interfaces has been a crucial component in quantum information processing and communication. In the past decade quantum interfaces between atoms and optical photons have been extensively explored by a number of leading groups. Quantum state transfer between light and atoms, such as quantum memory and quantum teleportation, entanglement of massive objects, as well as measurements and sensing beyond standard quantum limits have been demonstrated by the group of the PI.
We propose to develop a robust, integrated and scalable atom-light interface and to incorporate it into a hybrid multi-facet quantum network with other relevant quantum systems, such as nano-mechanical oscillators and electronic circuits.
Towards this ambitious goal we will develop room temperature atomic quantum memories in spin protecting micro-cells (mu-cells) and opto-mechanical and electromechanical strongly coupled systems. Interfacing atoms, electronic circuits and nano-mechanical oscillators we will perform ultrasensitive quantum limited field and force measurements and quantum teleportation of states across the range of these systems.
In the fundamental sense, this research program will further broaden the horizons of quantum physics and quantum information processing by expanding it into new and unexplored macroscopic domains.
Max ERC Funding
2 493 000 €
Duration
Start date: 2012-07-01, End date: 2017-06-30
Project acronym LCC
Project Coupled Cluster Calculations on Large Molecular Systems
Researcher (PI) Poul Jørgensen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary Quantum mechanics provides the key to the understanding of the molecular world. Many years of theoretical research have made coupled cluster calculations the state-of-the-art method for small molecules, where calculations have reached an accuracy often challenging experimental results. To describe large molecular systems with coupled cluster methods, the computational scaling with the system size of existing methods represents a roadblock to progress. The ultimate goal is to obtain coupled cluster methods that scale linearly with system size and where the calculations are embarrassingly parallel, such that calculations for small and large molecular systems require the same computational wall time. This proposal describes how this goal may be accomplished. The key is to express the coupled cluster wave function in a basis of local Hartree-Fock (HF) orbitals. We have recently shown how such a local HF basis may be obtained and described how linear-scaling, embarrassingly parallel coupled cluster energies may be obtained. Here we present proof-of-concept calculations for the energy and the molecular gradient for the simple model MP2 (second order Møller-Plesset perturbation theory) and propose to use the same technology for higher level coupled cluster methods to yield not only the energy of a large molecule, but also molecular properties as the equilibrium geometry, harmonic frequencies, excitation energies and transition moments, nuclear shieldings, polarizabilities and electronic and vibrational circular dichroism. This proposal will open a new era of accurate quantum calculations on large molecular systems such as nanoparticles and proteins. The presented developments will accelerate research, not only in chemistry and physics, but in molecular science and engineering in general.
Summary
Quantum mechanics provides the key to the understanding of the molecular world. Many years of theoretical research have made coupled cluster calculations the state-of-the-art method for small molecules, where calculations have reached an accuracy often challenging experimental results. To describe large molecular systems with coupled cluster methods, the computational scaling with the system size of existing methods represents a roadblock to progress. The ultimate goal is to obtain coupled cluster methods that scale linearly with system size and where the calculations are embarrassingly parallel, such that calculations for small and large molecular systems require the same computational wall time. This proposal describes how this goal may be accomplished. The key is to express the coupled cluster wave function in a basis of local Hartree-Fock (HF) orbitals. We have recently shown how such a local HF basis may be obtained and described how linear-scaling, embarrassingly parallel coupled cluster energies may be obtained. Here we present proof-of-concept calculations for the energy and the molecular gradient for the simple model MP2 (second order Møller-Plesset perturbation theory) and propose to use the same technology for higher level coupled cluster methods to yield not only the energy of a large molecule, but also molecular properties as the equilibrium geometry, harmonic frequencies, excitation energies and transition moments, nuclear shieldings, polarizabilities and electronic and vibrational circular dichroism. This proposal will open a new era of accurate quantum calculations on large molecular systems such as nanoparticles and proteins. The presented developments will accelerate research, not only in chemistry and physics, but in molecular science and engineering in general.
Max ERC Funding
1 738 432 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym TDMET
Project Time-resolving electron dynamics in molecules by time-dependent many-electron theory
Researcher (PI) Lars Bojer Madsen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary The interaction of atoms and molecules with new light sources such as attosecond and free-electron lasers is under strong current experimental investigation. Within the next few years the interest will shift from relatively simple systems with a few atoms and electrons to bigger systems with many atoms and may electrons. The aims will be to study time-resolved dynamics and chemical reactions on the natural timescales for these processes. To fulfill this ambitious goal, there will be a strong need for the development of new theory to guide the experiments and to analyze and understand the results. Currently there is no satisfactory theory in this research area that can treat more than the nonperturbative response of a single electron in a model potential. It is the purpose of the present project to develop such theory.
Summary
The interaction of atoms and molecules with new light sources such as attosecond and free-electron lasers is under strong current experimental investigation. Within the next few years the interest will shift from relatively simple systems with a few atoms and electrons to bigger systems with many atoms and may electrons. The aims will be to study time-resolved dynamics and chemical reactions on the natural timescales for these processes. To fulfill this ambitious goal, there will be a strong need for the development of new theory to guide the experiments and to analyze and understand the results. Currently there is no satisfactory theory in this research area that can treat more than the nonperturbative response of a single electron in a model potential. It is the purpose of the present project to develop such theory.
Max ERC Funding
1 330 305 €
Duration
Start date: 2011-12-01, End date: 2016-11-30