Project acronym AlgoFinance
Project Algorithmic Finance: Inquiring into the Reshaping of Financial Markets
Researcher (PI) Christian BORCH
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Summary
Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Max ERC Funding
1 590 036 €
Duration
Start date: 2017-05-01, End date: 2021-04-30
Project acronym B2C
Project Beasts to Craft: BioCodicology as a new approach to the study of parchment manuscripts
Researcher (PI) Matthew COLLINS
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), SH6, ERC-2017-ADG
Summary The intention of Beasts to Craft (B2C) is to document the biological and craft records in parchment in order to reveal the entangled histories of animal improvement and parchment production in Europe from 500-1900 AD.
B2C will lay the foundations for a new approach to the the study of parchment manuscripts —biocodicology— which draws evidence from the overlooked first stages in production, the raising of livestock and the preparation of the skins.
1. Parchment is an extraordinary but overlooked high resolution zooarchaeological record and a molecular archive. Livestock genetics is revealing breed diversity and markers of character traits such as fleece quality. B2C will exploit this new-found knowledge, using progressively older dated archival (sheep) parchments to study the history of improvement 1300 - 1900. Visual examination of the skins will search for direct evidence of disease and fleece quality.
2. Craft skills can be read from parchment and, when combined with chemical data and comparison with modern analogues, will produce the first European wide record of the craft from 500-1900. The size and scope of this the parchment archive means it is one of the largest and most highly resolved records of a specialist medieval craft. We will explore how these skills develop and when and where regional patterns appear and decline.
These two remarkable records requires a large interdisciplinary team. However biocodicology draws from and informs upon a wide and diverse spectrum of existing scholarship in conservation, the arts and sciences. A third strand of the project will (i) furnish manuscript scholars with some of the information available to the scribe at time of production (ii) inform and shape attitudes to parchment conservation (iii) provide high resolution biological data on animal management, movement and health and (iv) explore methods to link datasets and promote data reuse.
Summary
The intention of Beasts to Craft (B2C) is to document the biological and craft records in parchment in order to reveal the entangled histories of animal improvement and parchment production in Europe from 500-1900 AD.
B2C will lay the foundations for a new approach to the the study of parchment manuscripts —biocodicology— which draws evidence from the overlooked first stages in production, the raising of livestock and the preparation of the skins.
1. Parchment is an extraordinary but overlooked high resolution zooarchaeological record and a molecular archive. Livestock genetics is revealing breed diversity and markers of character traits such as fleece quality. B2C will exploit this new-found knowledge, using progressively older dated archival (sheep) parchments to study the history of improvement 1300 - 1900. Visual examination of the skins will search for direct evidence of disease and fleece quality.
2. Craft skills can be read from parchment and, when combined with chemical data and comparison with modern analogues, will produce the first European wide record of the craft from 500-1900. The size and scope of this the parchment archive means it is one of the largest and most highly resolved records of a specialist medieval craft. We will explore how these skills develop and when and where regional patterns appear and decline.
These two remarkable records requires a large interdisciplinary team. However biocodicology draws from and informs upon a wide and diverse spectrum of existing scholarship in conservation, the arts and sciences. A third strand of the project will (i) furnish manuscript scholars with some of the information available to the scribe at time of production (ii) inform and shape attitudes to parchment conservation (iii) provide high resolution biological data on animal management, movement and health and (iv) explore methods to link datasets and promote data reuse.
Max ERC Funding
2 499 462 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ChemEpigen
Project The chemical understanding of biomolecular recognition in epigenetics
Researcher (PI) Jasmin MECINOVIC
Host Institution (HI) SYDDANSK UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Summary
The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CIRCUITASSEMBLY
Project Development of functional organization of the visual circuits in mice
Researcher (PI) Keisuke Yonehara
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Summary
The key organizing principles that characterize neuronal systems include asymmetric, parallel, and topographic connectivity of the neural circuits. The main aim of my research is to elucidate the key principles underlying functional development of neural circuits by focusing on those organizing principles. I choose mouse visual system as my model since it contains all of these principles and provides sophisticated genetic tools to label and manipulate individual circuit components. My research is based on the central hypothesis that the mechanisms of brain development cannot be fully understood without first identifying individual functional cell types in adults, and then understanding how the functions of these cell types become established, using cell-type-specific molecular and synaptic mechanisms in developing animals. Recently, I have identified several transgenic mouse lines in which specific cell types in a visual center, the superior colliculus, are labeled with Cre recombinase in both developing and adult animals. Here I will take advantage of these mouse lines to ask fundamental questions about the functional development of neural circuits. First, how are distinct sensory features processed by the parallel topographic neuronal pathways, and how do they contribute to behavior? Second, what are the molecular and synaptic mechanisms that underlie developmental circuit plasticity for forming parallel topographic neuronal maps in the brain? Third, what are the molecular mechanisms that set up spatially asymmetric circuit connectivity without the need for sensory experience? I predict that my insights into the developmental mechanism of asymmetric, parallel, and topographic connectivity and circuit plasticity will be instructive when studying other brain circuits which contain similar organizing principles.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CLIC
Project Classical Influences and Irish Culture
Researcher (PI) Isabelle Torrance
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), SH5, ERC-2018-COG
Summary The hypothesis of this project is that Ireland has a unique and hitherto underexplored history of cultural engagement with models from ancient Greece and Rome. Unlike Britain and mainland Europe, Ireland was never part of the Roman Empire. Yet the island has an extraordinarily vibrant tradition of classical learning that dates back to its earliest recorded literature, and is unparalleled in other northern European countries. Research for this project will address why this is the case, by examining sources through nine significant diachronic themes identified by the PI: language; land; travel and exile; Troy; satire; Neoplatonism; female voices; material culture; and global influence. This multi-thematic approach will enable analysis of what is remarkable about classical reception in Ireland. It will also provide a heuristic framework that generates dialogue between normally disparate fields, such as classical reception studies, Irish and British history, English-language literature, Irish-language literature, medieval studies, postcolonial studies, philosophy, material culture, women's studies, and global studies. The project will engage with contemporary preoccupations surrounding the politics and history of the divided island of Ireland, such as the current decade of centenary commemorations for the foundation of an independent Irish state (1912-1922, 2012-2022), and the on-going violence and political divisions in Northern Ireland. These issues will serve as a springboard for opening new avenues of investigation that look far beyond the past 100 years, but are linked to them. The project will thus shed new light on the role of classical culture in shaping literary, social, and political discourse across the island of Ireland, and throughout its history.
Summary
The hypothesis of this project is that Ireland has a unique and hitherto underexplored history of cultural engagement with models from ancient Greece and Rome. Unlike Britain and mainland Europe, Ireland was never part of the Roman Empire. Yet the island has an extraordinarily vibrant tradition of classical learning that dates back to its earliest recorded literature, and is unparalleled in other northern European countries. Research for this project will address why this is the case, by examining sources through nine significant diachronic themes identified by the PI: language; land; travel and exile; Troy; satire; Neoplatonism; female voices; material culture; and global influence. This multi-thematic approach will enable analysis of what is remarkable about classical reception in Ireland. It will also provide a heuristic framework that generates dialogue between normally disparate fields, such as classical reception studies, Irish and British history, English-language literature, Irish-language literature, medieval studies, postcolonial studies, philosophy, material culture, women's studies, and global studies. The project will engage with contemporary preoccupations surrounding the politics and history of the divided island of Ireland, such as the current decade of centenary commemorations for the foundation of an independent Irish state (1912-1922, 2012-2022), and the on-going violence and political divisions in Northern Ireland. These issues will serve as a springboard for opening new avenues of investigation that look far beyond the past 100 years, but are linked to them. The project will thus shed new light on the role of classical culture in shaping literary, social, and political discourse across the island of Ireland, and throughout its history.
Max ERC Funding
1 888 592 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym CLIOARCH
Project Cliodynamic archaeology: Computational approaches to Final Palaeolithic/earliest Mesolithic archaeology and climate change
Researcher (PI) Felix RIEDE
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary Late Pleistocene/early Holocene Europe is said to be the ideal laboratory for the investigation of human responses to rapidly changing climates and environments, migration and adaptation. Yet, pinpointing precisely how and why contemporaneous Final Palaeolithic/earliest Mesolithic (15,000-11,000 years BP) foragers migrated, and which environmental or other factors they adapted to – or failed to – has remained remarkably elusive. At the core of ClioArch is the radical but, in light of research-historical insights, necessary hypothesis that the current archaeological cultural taxonomy for this iconic period of European prehistory is epistemologically flawed and that operationalisations and interpretations based on this traditional taxonomy – especially those that seek to relate observed changes in material culture and land-use to contemporaneous climatic and environmental changes – are therefore problematic. Hence, novel approaches to crafting the taxonomic building blocks are required, as are novel analyses of human|environment relations in this period. ClioArch’s premier ambition is to provide operational cultural taxonomies for the Final Palaeolithic/earliest Mesolithic of Europe and to couple these with interdisciplinary cultural evolutionary, quantitative ecological methods and field archaeological investigations beyond the state-of-the-art, so as to better capture such adaptations – almost certainly with major implications for the standard culture-historical narrative relating to this period. In so doing, the project will pioneer a fully transparent and replicable – and eminently transferable – methodology for the study of the impacts of climate change and extreme environmental events in deep history. In turn, such a quantitative understanding of past adaptive dynamics will position archaeology more centrally in contemporary debates about climate change, environmental catastrophe and their cultural dimensions.
Summary
Late Pleistocene/early Holocene Europe is said to be the ideal laboratory for the investigation of human responses to rapidly changing climates and environments, migration and adaptation. Yet, pinpointing precisely how and why contemporaneous Final Palaeolithic/earliest Mesolithic (15,000-11,000 years BP) foragers migrated, and which environmental or other factors they adapted to – or failed to – has remained remarkably elusive. At the core of ClioArch is the radical but, in light of research-historical insights, necessary hypothesis that the current archaeological cultural taxonomy for this iconic period of European prehistory is epistemologically flawed and that operationalisations and interpretations based on this traditional taxonomy – especially those that seek to relate observed changes in material culture and land-use to contemporaneous climatic and environmental changes – are therefore problematic. Hence, novel approaches to crafting the taxonomic building blocks are required, as are novel analyses of human|environment relations in this period. ClioArch’s premier ambition is to provide operational cultural taxonomies for the Final Palaeolithic/earliest Mesolithic of Europe and to couple these with interdisciplinary cultural evolutionary, quantitative ecological methods and field archaeological investigations beyond the state-of-the-art, so as to better capture such adaptations – almost certainly with major implications for the standard culture-historical narrative relating to this period. In so doing, the project will pioneer a fully transparent and replicable – and eminently transferable – methodology for the study of the impacts of climate change and extreme environmental events in deep history. In turn, such a quantitative understanding of past adaptive dynamics will position archaeology more centrally in contemporary debates about climate change, environmental catastrophe and their cultural dimensions.
Max ERC Funding
1 907 638 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CRIMTANG
Project Criminal Entanglements.A new ethnographic approach to transnational organised crime.
Researcher (PI) Henrik VIGH
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Linked to terrorism, moral breakdown, and societal decay, Transnational Organised Crime (TOC) has come to embody current global anxieties as a figure of fear and cause of disquiet. Yet despite its central position on the social and political radar, our knowledge of it remains limited and fragmentary. Quantitative analyses may have identified the scale of the problem, but its underlying socio-cultural logic and practices remain under-researched and largely obscure. TOC is on the rise, and we need better insights into how it develops and expands, who engages in it and why, and how it is linked to and embedded in social networks that straddle countries and contexts.
CRIMTANG proposes a unique approach to the study of the social infrastructure of contemporary TOC. It develops a research strategy that is ethnographic and transnational in design and so attuned to the human flows and formations of TOC. The project comprises a trans-disciplinary research team of anthropologists, criminologists and political scientists, and builds on their prior experience of the people, regions and languages under study. It explores the illegal and overlapping flows of migrants and drugs from North-West Africa into Europe, following a key trafficking trajectory stretching from Tangiers to Barcelona, Paris and beyond.
In so doing, CRIMTANG sheds new light on the actual empirical processes in operation at different points along this trafficking route, whilst simultaneously developing new theoretical and methodological apparatuses for apprehending TOC that can be exported and applied in other regions and contexts. It reimagines the idea of social entanglement and proposes new transnational and collective fieldwork strategies. Finally, it will advance and consolidate the European research environment on TOC by creating a research hub for transnational ethnographic criminology at the University of Copenhagen.
Summary
Linked to terrorism, moral breakdown, and societal decay, Transnational Organised Crime (TOC) has come to embody current global anxieties as a figure of fear and cause of disquiet. Yet despite its central position on the social and political radar, our knowledge of it remains limited and fragmentary. Quantitative analyses may have identified the scale of the problem, but its underlying socio-cultural logic and practices remain under-researched and largely obscure. TOC is on the rise, and we need better insights into how it develops and expands, who engages in it and why, and how it is linked to and embedded in social networks that straddle countries and contexts.
CRIMTANG proposes a unique approach to the study of the social infrastructure of contemporary TOC. It develops a research strategy that is ethnographic and transnational in design and so attuned to the human flows and formations of TOC. The project comprises a trans-disciplinary research team of anthropologists, criminologists and political scientists, and builds on their prior experience of the people, regions and languages under study. It explores the illegal and overlapping flows of migrants and drugs from North-West Africa into Europe, following a key trafficking trajectory stretching from Tangiers to Barcelona, Paris and beyond.
In so doing, CRIMTANG sheds new light on the actual empirical processes in operation at different points along this trafficking route, whilst simultaneously developing new theoretical and methodological apparatuses for apprehending TOC that can be exported and applied in other regions and contexts. It reimagines the idea of social entanglement and proposes new transnational and collective fieldwork strategies. Finally, it will advance and consolidate the European research environment on TOC by creating a research hub for transnational ethnographic criminology at the University of Copenhagen.
Max ERC Funding
1 999 909 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym D-TXM
Project Diffraction Based Transmission X-ray Microscopy
Researcher (PI) Henning Friis Poulsen
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Advanced Grant (AdG), PE5, ERC-2011-ADG_20110209
Summary The aim of this project is to develop a diffraction based transmission X-ray microscope, d-TXM, for non-destructive structural characterization of polycrystalline materials such as metals, ceramics, semiconductors, dust, soil and rocks, and for R&D applications in e.g. the energy-, electronics- and environmental sectors. Uniquely, d-TXM will be able to visualise the grains inside 100 micrometer thick specimens with a spatial resolution of 10-30 nm. Up to a thousand grains may be mapped simultaneously in three dimensions with respect to morphology, phase, orientation and local stress-state. Furthermore, the method will be sufficiently fast to enable the acquisition of 3D movies of the time evolution of the structure in nano-materials and components during synthesis, processing or operation.
During the last decade the applicant pioneered and matured a set of X-ray based methods for 3D studies of polycrystals on the micrometre scale. For this achievement, he is recognized as a worldwide leading figure in X-ray instrumentation for structural materials, situated at a nodal point between materials, X-ray physics, applied mathematics and crystallography. The underlying vision of d-TXM is similar to this past work, but in terms of optics the microscopy approach is radically different and the spatial resolution will be two orders of magnitude better.
In this project, the scientific potential will be demonstrated by means of applications to selected issues in metallurgy. Being able to directly observe the evolution of the individual crystalline elements, our understanding of processes such as plasticity and phase evolution can be greatly enhanced.
Dissemination to other fields will take place via an advisory board of future users and a workshop. Continuity of the project is ensured by the technique being implemented at the European Synchrotron Research Facility.
Summary
The aim of this project is to develop a diffraction based transmission X-ray microscope, d-TXM, for non-destructive structural characterization of polycrystalline materials such as metals, ceramics, semiconductors, dust, soil and rocks, and for R&D applications in e.g. the energy-, electronics- and environmental sectors. Uniquely, d-TXM will be able to visualise the grains inside 100 micrometer thick specimens with a spatial resolution of 10-30 nm. Up to a thousand grains may be mapped simultaneously in three dimensions with respect to morphology, phase, orientation and local stress-state. Furthermore, the method will be sufficiently fast to enable the acquisition of 3D movies of the time evolution of the structure in nano-materials and components during synthesis, processing or operation.
During the last decade the applicant pioneered and matured a set of X-ray based methods for 3D studies of polycrystals on the micrometre scale. For this achievement, he is recognized as a worldwide leading figure in X-ray instrumentation for structural materials, situated at a nodal point between materials, X-ray physics, applied mathematics and crystallography. The underlying vision of d-TXM is similar to this past work, but in terms of optics the microscopy approach is radically different and the spatial resolution will be two orders of magnitude better.
In this project, the scientific potential will be demonstrated by means of applications to selected issues in metallurgy. Being able to directly observe the evolution of the individual crystalline elements, our understanding of processes such as plasticity and phase evolution can be greatly enhanced.
Dissemination to other fields will take place via an advisory board of future users and a workshop. Continuity of the project is ensured by the technique being implemented at the European Synchrotron Research Facility.
Max ERC Funding
2 499 860 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym DEVOMIND
Project How do infants mentalize? Bringing a neuroimaging approach to the puzzle of early mindreading.
Researcher (PI) Victoria SOUTHGATE
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Human social interaction and learning depends on making the right inferences about other people’s thoughts, a process commonly called mentalizing, or Theory of Mind, a cognitive achievement which several decades of research concluded was reached at around age 4. The last 10 years has radically changed this view, and innovative new paradigms suggest that even preverbal infants can think about others’ minds. This new developmental data has created arguably one of the biggest puzzles in the history of developmental science: How can infants be mentalizing when years of research have shown that a) pre-schoolers fail at mentalizing tasks and b) mentalizing depends on the development of cognitive control, language, and brain maturation? The key issue is whether behaviour that looks like infant mentalizing really is mentalizing, or might infants’ success belie alternative processes? The most powerful strategy for resolving this puzzle is to look to brain activity. By applying the same methods and paradigms across infancy and early childhood, DEVOMIND will investigate whether infants’ success on mentalizing tasks recruits the same network of brain regions, and neural processes, that we know are involved in success in older children and adults. In the second half of the project, we will use our neural indicators of mentalizing to test a completely novel hypothesis in which infants’ success is possible because they have a limited ability to distinguish self from other. Although novel, this hypothesis deserves to be tested because it has the potential to explain both infants’ success and preschoolers’ failures under a single, unified theory. By bringing a neuroimaging approach to the puzzle of early mentalizing, DEVOMIND will allow us to move beyond the current impasse, and to generate a new theory of Theory of Mind.
Summary
Human social interaction and learning depends on making the right inferences about other people’s thoughts, a process commonly called mentalizing, or Theory of Mind, a cognitive achievement which several decades of research concluded was reached at around age 4. The last 10 years has radically changed this view, and innovative new paradigms suggest that even preverbal infants can think about others’ minds. This new developmental data has created arguably one of the biggest puzzles in the history of developmental science: How can infants be mentalizing when years of research have shown that a) pre-schoolers fail at mentalizing tasks and b) mentalizing depends on the development of cognitive control, language, and brain maturation? The key issue is whether behaviour that looks like infant mentalizing really is mentalizing, or might infants’ success belie alternative processes? The most powerful strategy for resolving this puzzle is to look to brain activity. By applying the same methods and paradigms across infancy and early childhood, DEVOMIND will investigate whether infants’ success on mentalizing tasks recruits the same network of brain regions, and neural processes, that we know are involved in success in older children and adults. In the second half of the project, we will use our neural indicators of mentalizing to test a completely novel hypothesis in which infants’ success is possible because they have a limited ability to distinguish self from other. Although novel, this hypothesis deserves to be tested because it has the potential to explain both infants’ success and preschoolers’ failures under a single, unified theory. By bringing a neuroimaging approach to the puzzle of early mentalizing, DEVOMIND will allow us to move beyond the current impasse, and to generate a new theory of Theory of Mind.
Max ERC Funding
1 761 190 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym DIPLOFACE
Project Diplomatic Face-Work - between confidential negotiations and public display
Researcher (PI) Rebecca Adler-Nissen
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary The rise of social media, coupled with intensifying demands for more transparency and democracy in world politics, brings new challenges to international diplomacy. State leaders and diplomats continue to react to traditional media, but now also attempt to present themselves proactively through tweets, public diplomacy and nation branding. These efforts often take place simultaneously and sometimes interfere directly with closed-door negotiations and its culture of restraint and secrecy. Yet the relationship between confidential diplomacy and public representation remains understudied.
DIPLOFACE will develop a sociologically and anthropologically informed approach to studying how state leaders and diplomats manage their nation’s ‘faces’ in the information age. The project will explore the relationship and tensions between confidential diplomatic negotiations and publicly displayed interventions in various media, applying the micro-sociological concept of ‘face-work’. DIPLOFACE will analyse the complex interactional dynamics that shape the diplomatic techniques and strategies used to convey a nation’s ‘face’ or ‘image of self’. Such face-work is increasingly important for national leaders and diplomats who perform simultaneously on the ‘back-stage’ and the ‘front-stage’ of international relations. DIPLOFACE will identify, theorize and analyse the repertoire of face-saving, face-honouring and face-threatening practices that are employed in confidential negotiations and in public.
DIPLOFACE advances our theoretical understanding of diplomacy in the 21st century significantly beyond existing International Relations and diplomatic theory. Combining participant observation, interviews and media analysis, DIPLOFACE will generate important new knowledge about the relationship between public and confidential multilateral negotiation, how state leaders and diplomats handle new media, and the role of face-saving and face-threatening strategies in international relations.
Summary
The rise of social media, coupled with intensifying demands for more transparency and democracy in world politics, brings new challenges to international diplomacy. State leaders and diplomats continue to react to traditional media, but now also attempt to present themselves proactively through tweets, public diplomacy and nation branding. These efforts often take place simultaneously and sometimes interfere directly with closed-door negotiations and its culture of restraint and secrecy. Yet the relationship between confidential diplomacy and public representation remains understudied.
DIPLOFACE will develop a sociologically and anthropologically informed approach to studying how state leaders and diplomats manage their nation’s ‘faces’ in the information age. The project will explore the relationship and tensions between confidential diplomatic negotiations and publicly displayed interventions in various media, applying the micro-sociological concept of ‘face-work’. DIPLOFACE will analyse the complex interactional dynamics that shape the diplomatic techniques and strategies used to convey a nation’s ‘face’ or ‘image of self’. Such face-work is increasingly important for national leaders and diplomats who perform simultaneously on the ‘back-stage’ and the ‘front-stage’ of international relations. DIPLOFACE will identify, theorize and analyse the repertoire of face-saving, face-honouring and face-threatening practices that are employed in confidential negotiations and in public.
DIPLOFACE advances our theoretical understanding of diplomacy in the 21st century significantly beyond existing International Relations and diplomatic theory. Combining participant observation, interviews and media analysis, DIPLOFACE will generate important new knowledge about the relationship between public and confidential multilateral negotiation, how state leaders and diplomats handle new media, and the role of face-saving and face-threatening strategies in international relations.
Max ERC Funding
1 493 062 €
Duration
Start date: 2016-04-01, End date: 2021-03-31