Project acronym ABINITIODGA
Project Ab initio Dynamical Vertex Approximation
Researcher (PI) Karsten Held
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Summary
Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Max ERC Funding
1 491 090 €
Duration
Start date: 2013-01-01, End date: 2018-07-31
Project acronym ACTIVENP
Project Active and low loss nano photonics (ActiveNP)
Researcher (PI) Thomas Arno Klar
Host Institution (HI) UNIVERSITAT LINZ
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Summary
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Max ERC Funding
1 494 756 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym ALICE
Project Strange Mirrors, Unsuspected Lessons: Leading Europe to a new way of sharing the world experiences
Researcher (PI) Boaventura De Sousa Santos
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Country Portugal
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Summary
Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Max ERC Funding
2 423 140 €
Duration
Start date: 2011-07-01, End date: 2016-12-31
Project acronym ANGULON
Project Angulon: physics and applications of a new quasiparticle
Researcher (PI) Mikhail Lemeshko
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Summary
This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Max ERC Funding
1 499 588 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym AQSuS
Project Analog Quantum Simulation using Superconducting Qubits
Researcher (PI) Gerhard KIRCHMAIR
Host Institution (HI) UNIVERSITAET INNSBRUCK
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Summary
AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Max ERC Funding
1 498 515 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BHIVE
Project Bio-derived HIgh Value polymers through novel Enzyme function
Researcher (PI) Emma Rusi Master
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Summary
Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Max ERC Funding
1 977 781 €
Duration
Start date: 2015-09-01, End date: 2020-12-31
Project acronym CAVITYQPD
Project Cavity quantum phonon dynamics
Researcher (PI) Mika Antero Sillanpaeae
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE3, ERC-2013-CoG
Summary "Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Summary
"Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Max ERC Funding
2 004 283 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym CC4SOL
Project Towards chemical accuracy in computational materials science
Researcher (PI) Andreas GRueNEIS
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary This project aims at the development of a novel toolbox of ab-initio methods that approximate the true many-electron wavefunction using systematically improvable perturbation and coupled-cluster theories. The demand and prospects for these methods are excellent given that the highly-accurate coupled-cluster theories can predict atomization- and reaction energies in a wide range of solids and molecules with chemical accuracy (≈43 meV). However, the computational cost involved inhibits their widespread use in the field of materials science so far. A multitude of suggested developments in the present proposal hold the promise to reduce the computational cost beyond what is currently considered possible by the community. These include explicit correlation methods that augment the conventional wavefunction expansion with terms that depend on the electron pair correlation factors. In contrast to the widely-used homogeneous correlation factors, this proposal aims at the investigation of inhomogeneous correlation factors that can also capture van der Waals interactions. Furthermore this proposal seeks to employ a recently developed combination of atom-centered basis functions and plane wave basis sets, maximizing the compactness in the wavefunction expansion. The combination of these ideas bears the potential to reduce the computational cost of coupled-cluster calculations in solids by three orders of magnitude, leading to a breakthrough in the field of highly-accurate ab-initio simulations. As such the study of challenging solid state physics and chemistry problems forms an important part of this proposal. We seek to investigate molecular adsorption and reactions in zeolites and on surfaces, pressure-driven solid-solid phase transitions of two dimensional layered materials and defects in solids. These problems are paradigmatic for van der Waals interactions and strong correlation, and methods that describe their electronic structure accurately are highly sought after.
Summary
This project aims at the development of a novel toolbox of ab-initio methods that approximate the true many-electron wavefunction using systematically improvable perturbation and coupled-cluster theories. The demand and prospects for these methods are excellent given that the highly-accurate coupled-cluster theories can predict atomization- and reaction energies in a wide range of solids and molecules with chemical accuracy (≈43 meV). However, the computational cost involved inhibits their widespread use in the field of materials science so far. A multitude of suggested developments in the present proposal hold the promise to reduce the computational cost beyond what is currently considered possible by the community. These include explicit correlation methods that augment the conventional wavefunction expansion with terms that depend on the electron pair correlation factors. In contrast to the widely-used homogeneous correlation factors, this proposal aims at the investigation of inhomogeneous correlation factors that can also capture van der Waals interactions. Furthermore this proposal seeks to employ a recently developed combination of atom-centered basis functions and plane wave basis sets, maximizing the compactness in the wavefunction expansion. The combination of these ideas bears the potential to reduce the computational cost of coupled-cluster calculations in solids by three orders of magnitude, leading to a breakthrough in the field of highly-accurate ab-initio simulations. As such the study of challenging solid state physics and chemistry problems forms an important part of this proposal. We seek to investigate molecular adsorption and reactions in zeolites and on surfaces, pressure-driven solid-solid phase transitions of two dimensional layered materials and defects in solids. These problems are paradigmatic for van der Waals interactions and strong correlation, and methods that describe their electronic structure accurately are highly sought after.
Max ERC Funding
1 460 826 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym CLIMASLOW
Project Slowing Down Climate Change: Combining Climate Law and Climate Science to Identify the Best Options to Reduce Emissions of Short-Lived Climate Forcers in Developing Countries
Researcher (PI) Kati Marjo Johanna Kulovesi
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), SH2, ERC-2015-STG
Summary The ClimaSlow project opens new interdisciplinary horizons to identify the best opportunities to enhance the global legal and regulatory framework for reducing emissions of short-lived climate pollutants (SLCFs), with particular attention to developing countries as projected key sources of future SLCF emissions. It proceeds from the assumption that strengthening the global legal and regulatory framework for SLCFs would bring important benefits in terms of slowing down climate change and reducing local air pollution. However, legal and regulatory options to step up action on SLCFs have not been studied comprehensively. Furthermore, the climate impacts of the various options are not adequately understood.
In contrast to traditional legal analysis that would focus one legal system or instrument, the project will study the relevant legal and regulatory frameworks comprehensively, considering the international, regional, national and transnational levels. It will seek to identify various options, both formal legal instruments and informal regulatory initiatives, to strengthen the global legal and regulatory frameworks applicable to SLCFs. In addition to providing information on best options to regulate SLCFs, this novel, comprehensive approach will help scholars to improve their understanding of the implications of ongoing changes in global legal landscape, including its presumed fragmentation and deformalisation.
Addressing an important gap in current knowledge, the project will combine analysis of the merits of the various legal and regulatory options with estimates of their climate change impacts on the basis of climate modeling. This way, it will be able to identify the alternatives that are the most promising both from the legal point of view and in terms of climate change mitigation potential. The project will generate information that is policy-relevant and context-specific but can simultaneously provide broader lessons and open new interdisciplinary horizons.
Summary
The ClimaSlow project opens new interdisciplinary horizons to identify the best opportunities to enhance the global legal and regulatory framework for reducing emissions of short-lived climate pollutants (SLCFs), with particular attention to developing countries as projected key sources of future SLCF emissions. It proceeds from the assumption that strengthening the global legal and regulatory framework for SLCFs would bring important benefits in terms of slowing down climate change and reducing local air pollution. However, legal and regulatory options to step up action on SLCFs have not been studied comprehensively. Furthermore, the climate impacts of the various options are not adequately understood.
In contrast to traditional legal analysis that would focus one legal system or instrument, the project will study the relevant legal and regulatory frameworks comprehensively, considering the international, regional, national and transnational levels. It will seek to identify various options, both formal legal instruments and informal regulatory initiatives, to strengthen the global legal and regulatory frameworks applicable to SLCFs. In addition to providing information on best options to regulate SLCFs, this novel, comprehensive approach will help scholars to improve their understanding of the implications of ongoing changes in global legal landscape, including its presumed fragmentation and deformalisation.
Addressing an important gap in current knowledge, the project will combine analysis of the merits of the various legal and regulatory options with estimates of their climate change impacts on the basis of climate modeling. This way, it will be able to identify the alternatives that are the most promising both from the legal point of view and in terms of climate change mitigation potential. The project will generate information that is policy-relevant and context-specific but can simultaneously provide broader lessons and open new interdisciplinary horizons.
Max ERC Funding
1 456 179 €
Duration
Start date: 2017-01-01, End date: 2022-06-30
Project acronym CROWDED-PRO-LIPIDS
Project Computational Perspective to Dynamical Protein-Lipid Complexes under Crowded Conditions
Researcher (PI) Ilpo Tapio Vattulainen
Host Institution (HI) TTY-SAATIO
Country Finland
Call Details Advanced Grant (AdG), PE3, ERC-2011-ADG_20110209
Summary "One of the great challenges is to understand how cellular functions emerge in cell membrane systems. Unlocking this mystery is the key to the vast majority of human diseases. The current view is based on a static picture where membrane proteins in protein-poor membranes interact with a few specific lipids, while in reality the situation is much more complicated. This ambitious project aims for a breakthrough by changing the present paradigm. The objective is to focus on the dynamical interplay between lipids and proteins under crowded conditions, paving the way for understanding the dynamics of lipid-protein complexes and their resulting functions. The objectives are outstanding and contain a high risk, with exceptional gain. The main goal is better understanding of the physical principles that give rise to cellular functions, with a strong impact to clarify the relevance of dynamical lipid-protein interactions in cellular processes related to health and disease. For this purpose, the grand themes chosen for this project are lipoproteins coupled to cardiovascular disease (“good” and “bad” cholesterol) and the function of especially cholesterol and glycolipids with membrane proteins. In order to meet these goals, the applicant employs state-of-the-art simulation techniques that comprise quantum-mechanical, classical atomistic and coarse-grained simulation methods to elucidate the complex biological phenomena associated with lipid-protein systems. The simulations cover atomistic and molecular details, over time scales from femtoseconds up to milliseconds. The theory & simulation group lead by PI comprises expertise in a truly cross- and multi-disciplinary manner, and it strongly collaborates with some of the leading experimental teams in biomedical sciences, cell biology, structural biology, and membrane biophysics."
Summary
"One of the great challenges is to understand how cellular functions emerge in cell membrane systems. Unlocking this mystery is the key to the vast majority of human diseases. The current view is based on a static picture where membrane proteins in protein-poor membranes interact with a few specific lipids, while in reality the situation is much more complicated. This ambitious project aims for a breakthrough by changing the present paradigm. The objective is to focus on the dynamical interplay between lipids and proteins under crowded conditions, paving the way for understanding the dynamics of lipid-protein complexes and their resulting functions. The objectives are outstanding and contain a high risk, with exceptional gain. The main goal is better understanding of the physical principles that give rise to cellular functions, with a strong impact to clarify the relevance of dynamical lipid-protein interactions in cellular processes related to health and disease. For this purpose, the grand themes chosen for this project are lipoproteins coupled to cardiovascular disease (“good” and “bad” cholesterol) and the function of especially cholesterol and glycolipids with membrane proteins. In order to meet these goals, the applicant employs state-of-the-art simulation techniques that comprise quantum-mechanical, classical atomistic and coarse-grained simulation methods to elucidate the complex biological phenomena associated with lipid-protein systems. The simulations cover atomistic and molecular details, over time scales from femtoseconds up to milliseconds. The theory & simulation group lead by PI comprises expertise in a truly cross- and multi-disciplinary manner, and it strongly collaborates with some of the leading experimental teams in biomedical sciences, cell biology, structural biology, and membrane biophysics."
Max ERC Funding
1 920 334 €
Duration
Start date: 2012-05-01, End date: 2017-04-30