Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Summary
The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym B Massive
Project Binary massive black hole astrophysics
Researcher (PI) Alberto SESANA
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary Massive black hole binaries (MBHBs) are the most extreme, fascinating yet elusive astrophysical objects in the Universe. Establishing observationally their existence will be a milestone for contemporary astronomy, providing a fundamental missing piece in the puzzle of galaxy formation, piercing through the (hydro)dynamical physical processes shaping dense galactic nuclei from parsec scales down to the event horizon, and probing gravity in extreme conditions.
We can both see and listen to MBHBs. Remarkably, besides arguably being among the brightest variable objects shining in the Cosmos, MBHBs are also the loudest gravitational wave (GW) sources in the Universe. As such, we shall take advantage of both the type of messengers – photons and gravitons – they are sending to us, which can now be probed by all-sky time-domain surveys and radio pulsar timing arrays (PTAs) respectively.
B MASSIVE leverages on a unique comprehensive approach combining theoretical astrophysics, radio and gravitational-wave astronomy and time-domain surveys, with state of the art data analysis techniques to: i) observationally prove the existence of MBHBs, ii) understand and constrain their astrophysics and dynamics, iii) enable and bring closer in time the direct detection of GWs with PTA.
As European PTA (EPTA) executive committee member and former I
International PTA (IPTA) chair, I am a driving force in the development of pulsar timing science world-wide, and the project will build on the profound knowledge, broad vision and wide collaboration network that established me as a world leader in the field of MBHB and GW astrophysics. B MASSIVE is extremely timely; a pulsar timing data set of unprecedented quality is being assembled by EPTA/IPTA, and Time-Domain astronomy surveys are at their dawn. In the long term, B MASSIVE will be a fundamental milestone establishing European leadership in the cutting-edge field of MBHB astrophysics in the era of LSST, SKA and LISA.
Summary
Massive black hole binaries (MBHBs) are the most extreme, fascinating yet elusive astrophysical objects in the Universe. Establishing observationally their existence will be a milestone for contemporary astronomy, providing a fundamental missing piece in the puzzle of galaxy formation, piercing through the (hydro)dynamical physical processes shaping dense galactic nuclei from parsec scales down to the event horizon, and probing gravity in extreme conditions.
We can both see and listen to MBHBs. Remarkably, besides arguably being among the brightest variable objects shining in the Cosmos, MBHBs are also the loudest gravitational wave (GW) sources in the Universe. As such, we shall take advantage of both the type of messengers – photons and gravitons – they are sending to us, which can now be probed by all-sky time-domain surveys and radio pulsar timing arrays (PTAs) respectively.
B MASSIVE leverages on a unique comprehensive approach combining theoretical astrophysics, radio and gravitational-wave astronomy and time-domain surveys, with state of the art data analysis techniques to: i) observationally prove the existence of MBHBs, ii) understand and constrain their astrophysics and dynamics, iii) enable and bring closer in time the direct detection of GWs with PTA.
As European PTA (EPTA) executive committee member and former I
International PTA (IPTA) chair, I am a driving force in the development of pulsar timing science world-wide, and the project will build on the profound knowledge, broad vision and wide collaboration network that established me as a world leader in the field of MBHB and GW astrophysics. B MASSIVE is extremely timely; a pulsar timing data set of unprecedented quality is being assembled by EPTA/IPTA, and Time-Domain astronomy surveys are at their dawn. In the long term, B MASSIVE will be a fundamental milestone establishing European leadership in the cutting-edge field of MBHB astrophysics in the era of LSST, SKA and LISA.
Max ERC Funding
1 532 750 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BEAT
Project The functional interaction of EGFR and beta-catenin signalling in colorectal cancer: Genetics, mechanisms, and therapeutic potential.
Researcher (PI) Andrea BERTOTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Summary
Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Max ERC Funding
1 793 421 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym bECOMiNG
Project spontaneous Evolution and Clonal heterOgeneity in MoNoclonal Gammopathies: from mechanisms of progression to clinical management
Researcher (PI) Niccolo Bolli
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary As an onco-hematologist with a strong expertise in genomics, I significantly contributed to the understanding of multiple myeloma (MM) heterogeneity and its evolution over time, driven by genotypic and phenotypic features carried by different subpopulations of cells. MM is preceded by prevalent, asymptomatic stages that may evolve with variable frequency, not accurately captured by current clinical prognostic scores. Supported by preliminary data, my hypothesis is that the same heterogeneity is present early on the disease course, and identification of the biological determinants of evolution at this stage will allow better prediction of its evolutionary trajectory, if not its control. In this proposal I will therefore make a sharp change from conventional approaches and move to early stages of MM using unique retrospective sample cohorts and ambitious prospective sampling. To identify clonal MM cells in the elderly before a monoclonal gammopathy can be detected, I will collect bone marrow (BM) from hundreds of hip replacement specimens, and analyze archive peripheral blood samples of thousands of healthy individuals with years of annotated clinical follow-up. This will identify early genomic alterations that are permissive to disease initiation/evolution and may serve as biomarkers for clinical screening. Through innovative, integrated single-cell genotyping and phenotyping of hundreds of asymptomatic MMs, I will functionally dissect heterogeneity and characterize the BM microenvironment to look for determinants of disease progression. Correlation with clinical outcome and mini-invasive serial sampling of circulating cell-free DNA will identify candidate biological markers to better predict evolution. Last, aggressive modelling of candidate early lesions and modifier screens will offer a list of vulnerabilities that could be exploited for rationale therapies. These methodologies will deliver a paradigm for the use of molecularly-driven precision medicine in cancer.
Summary
As an onco-hematologist with a strong expertise in genomics, I significantly contributed to the understanding of multiple myeloma (MM) heterogeneity and its evolution over time, driven by genotypic and phenotypic features carried by different subpopulations of cells. MM is preceded by prevalent, asymptomatic stages that may evolve with variable frequency, not accurately captured by current clinical prognostic scores. Supported by preliminary data, my hypothesis is that the same heterogeneity is present early on the disease course, and identification of the biological determinants of evolution at this stage will allow better prediction of its evolutionary trajectory, if not its control. In this proposal I will therefore make a sharp change from conventional approaches and move to early stages of MM using unique retrospective sample cohorts and ambitious prospective sampling. To identify clonal MM cells in the elderly before a monoclonal gammopathy can be detected, I will collect bone marrow (BM) from hundreds of hip replacement specimens, and analyze archive peripheral blood samples of thousands of healthy individuals with years of annotated clinical follow-up. This will identify early genomic alterations that are permissive to disease initiation/evolution and may serve as biomarkers for clinical screening. Through innovative, integrated single-cell genotyping and phenotyping of hundreds of asymptomatic MMs, I will functionally dissect heterogeneity and characterize the BM microenvironment to look for determinants of disease progression. Correlation with clinical outcome and mini-invasive serial sampling of circulating cell-free DNA will identify candidate biological markers to better predict evolution. Last, aggressive modelling of candidate early lesions and modifier screens will offer a list of vulnerabilities that could be exploited for rationale therapies. These methodologies will deliver a paradigm for the use of molecularly-driven precision medicine in cancer.
Max ERC Funding
1 998 781 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BiT
Project How the Human Brain Masters Time
Researcher (PI) Domenica Bueti
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), SH4, ERC-2015-CoG
Summary If you suddenly hear your song on the radio and spontaneously decide to burst into dance in your living room, you need to precisely time your movements if you do not want to find yourself on your bookshelf. Most of what we do or perceive depends on how accurately we represent the temporal properties of the environment however we cannot see or touch time. As such, time in the millisecond range is both a fundamental and elusive dimension of everyday experiences. Despite the obvious importance of time to information processing and to behavior in general, little is known yet about how the human brain process time. Existing approaches to the study of the neural mechanisms of time mainly focus on the identification of brain regions involved in temporal computations (‘where’ time is processed in the brain), whereas most computational models vary in their biological plausibility and do not always make clear testable predictions. BiT is a groundbreaking research program designed to challenge current models of time perception and to offer a new perspective in the study of the neural basis of time. The groundbreaking nature of BiT derives from the novelty of the questions asked (‘when’ and ‘how’ time is processed in the brain) and from addressing them using complementary but distinct research approaches (from human neuroimaging to brain stimulation techniques, from the investigation of the whole brain to the focus on specific brain regions). By testing a new biologically plausible hypothesis of temporal representation (via duration tuning and ‘chronotopy’) and by scrutinizing the functional properties and, for the first time, the temporal hierarchies of ‘putative’ time regions, BiT will offer a multifaceted knowledge of how the human brain represents time. This new knowledge will challenge our understanding of brain organization and function that typically lacks of a time angle and will impact our understanding of how the brain uses time information for perception and action
Summary
If you suddenly hear your song on the radio and spontaneously decide to burst into dance in your living room, you need to precisely time your movements if you do not want to find yourself on your bookshelf. Most of what we do or perceive depends on how accurately we represent the temporal properties of the environment however we cannot see or touch time. As such, time in the millisecond range is both a fundamental and elusive dimension of everyday experiences. Despite the obvious importance of time to information processing and to behavior in general, little is known yet about how the human brain process time. Existing approaches to the study of the neural mechanisms of time mainly focus on the identification of brain regions involved in temporal computations (‘where’ time is processed in the brain), whereas most computational models vary in their biological plausibility and do not always make clear testable predictions. BiT is a groundbreaking research program designed to challenge current models of time perception and to offer a new perspective in the study of the neural basis of time. The groundbreaking nature of BiT derives from the novelty of the questions asked (‘when’ and ‘how’ time is processed in the brain) and from addressing them using complementary but distinct research approaches (from human neuroimaging to brain stimulation techniques, from the investigation of the whole brain to the focus on specific brain regions). By testing a new biologically plausible hypothesis of temporal representation (via duration tuning and ‘chronotopy’) and by scrutinizing the functional properties and, for the first time, the temporal hierarchies of ‘putative’ time regions, BiT will offer a multifaceted knowledge of how the human brain represents time. This new knowledge will challenge our understanding of brain organization and function that typically lacks of a time angle and will impact our understanding of how the brain uses time information for perception and action
Max ERC Funding
1 670 830 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ContraNPM1AML
Project Dissecting to hit the therapeutic targets in nucleophosmin (NPM1)-mutated acute myeloid leukemia
Researcher (PI) Maria Paola MARTELLI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Acute myeloid leukemia (AML) is a group of hematologic malignancies which, due to their molecular and clinical heterogeneity, have been traditionally difficult to classify and treat. Recently, next-generation, whole-genome sequencing has uncovered several recurrent somatic mutations that better define the landscape of AML genomics. Despite these advances in deciphering AML molecular subsets, there have been no concurrent improvements in AML therapy which still relies on the ‘antracycline+cytarabine’ scheme. Hereto, only about 40-50% of adult young patients are cured whilst most of the elderly succumb to their disease. Therefore, new therapeutic approaches which would take advantage of the new discoveries are clearly needed. In the past years, we discovered and characterized nucleophosmin (NPM1) mutations as the most frequent genetic alteration (about 30%) in AML, and today NPM1-mutated AML is a new entity in the WHO classification of myeloid neoplasms. However, mechanisms of leukemogenesis and a specific therapy for this leukemia are missing. Here, I aim to unravel the complex network of molecular interactions that take place in this distinct genetic subtype, and find their vulnerabilities to identify new targets for therapy. To address this issue, I will avail of relevant pre-clinical models developed in our laboratories and propose two complementary strategies: 1) a screening-based approach, focused either on the target, by analyzing synthetic lethal interactions through CRISPR-based genome-wide interference, or on the drug, by high-throughput chemical libraries screenings; 2) a hypothesis-driven approach, based on our recent gained novel insights on the role of specific intracellular pathways/genes in NPM1-mutated AML and on pharmacological studies with ‘old’ drugs, which we have revisited in the specific AML genetic context. I expect our discoveries will lead to find novel therapeutic approaches and make clinical trials available to patients as soon as possible.
Summary
Acute myeloid leukemia (AML) is a group of hematologic malignancies which, due to their molecular and clinical heterogeneity, have been traditionally difficult to classify and treat. Recently, next-generation, whole-genome sequencing has uncovered several recurrent somatic mutations that better define the landscape of AML genomics. Despite these advances in deciphering AML molecular subsets, there have been no concurrent improvements in AML therapy which still relies on the ‘antracycline+cytarabine’ scheme. Hereto, only about 40-50% of adult young patients are cured whilst most of the elderly succumb to their disease. Therefore, new therapeutic approaches which would take advantage of the new discoveries are clearly needed. In the past years, we discovered and characterized nucleophosmin (NPM1) mutations as the most frequent genetic alteration (about 30%) in AML, and today NPM1-mutated AML is a new entity in the WHO classification of myeloid neoplasms. However, mechanisms of leukemogenesis and a specific therapy for this leukemia are missing. Here, I aim to unravel the complex network of molecular interactions that take place in this distinct genetic subtype, and find their vulnerabilities to identify new targets for therapy. To address this issue, I will avail of relevant pre-clinical models developed in our laboratories and propose two complementary strategies: 1) a screening-based approach, focused either on the target, by analyzing synthetic lethal interactions through CRISPR-based genome-wide interference, or on the drug, by high-throughput chemical libraries screenings; 2) a hypothesis-driven approach, based on our recent gained novel insights on the role of specific intracellular pathways/genes in NPM1-mutated AML and on pharmacological studies with ‘old’ drugs, which we have revisited in the specific AML genetic context. I expect our discoveries will lead to find novel therapeutic approaches and make clinical trials available to patients as soon as possible.
Max ERC Funding
1 883 750 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CWASI
Project Coping with water scarcity in a globalized world
Researcher (PI) Francesco Laio
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), SH3, ERC-2014-CoG
Summary We intend to set up a new globalized perspective to tackle water and food security in the 21st century. This issue is intrinsically global as the international trade of massive amounts of food makes societies less reliant on locally available water, and entails large-scale transfers of virtual water (defined as the water needed to produce a given amount of a food commodity). The network of virtual water trade connects a large portion of the global population, with 2800 km3 of virtual water moved around the globe in a year. We provide here definitive indications on the effects of the globalization of (virtual) water on the vulnerability to a water crisis of the global water system. More specifically, we formulate the following research hypotheses:
1) The globalization of (virtual) water resources is a short-term solution to malnourishment, famine, and conflicts, but it also has relevant negative implications for human societies.
2) The virtual water dynamics provide the suitable framework in order to quantitatively relate water-crises occurrence to environmental and socio-economic factors.
3) The risk of catastrophic, global-scale, water crises will increase in the next decades.
To test these hypotheses, we will capitalize on the tremendous amount of information embedded in nearly 50 years of available food and virtual water trade data. We will adopt an innovative research approach based on the use of: advanced statistical tools for data verification and uncertainty modeling; methods borrowed from the complex network theory, aimed at analyzing the propagation of failures through the network; multivariate nonlinear analyses, to reproduce the dependence of virtual water on time and on external drivers; multi-state stochastic modeling, to study the effect on the global water system of random fluctuations of the external drivers; and scenario analysis, to predict the future probability of occurrence of water crises.
Summary
We intend to set up a new globalized perspective to tackle water and food security in the 21st century. This issue is intrinsically global as the international trade of massive amounts of food makes societies less reliant on locally available water, and entails large-scale transfers of virtual water (defined as the water needed to produce a given amount of a food commodity). The network of virtual water trade connects a large portion of the global population, with 2800 km3 of virtual water moved around the globe in a year. We provide here definitive indications on the effects of the globalization of (virtual) water on the vulnerability to a water crisis of the global water system. More specifically, we formulate the following research hypotheses:
1) The globalization of (virtual) water resources is a short-term solution to malnourishment, famine, and conflicts, but it also has relevant negative implications for human societies.
2) The virtual water dynamics provide the suitable framework in order to quantitatively relate water-crises occurrence to environmental and socio-economic factors.
3) The risk of catastrophic, global-scale, water crises will increase in the next decades.
To test these hypotheses, we will capitalize on the tremendous amount of information embedded in nearly 50 years of available food and virtual water trade data. We will adopt an innovative research approach based on the use of: advanced statistical tools for data verification and uncertainty modeling; methods borrowed from the complex network theory, aimed at analyzing the propagation of failures through the network; multivariate nonlinear analyses, to reproduce the dependence of virtual water on time and on external drivers; multi-state stochastic modeling, to study the effect on the global water system of random fluctuations of the external drivers; and scenario analysis, to predict the future probability of occurrence of water crises.
Max ERC Funding
1 222 500 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DEMOBLACK
Project Demography of black hole binaries in the era of gravitational wave astronomy
Researcher (PI) Michela MAPELLI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The first direct detection of gravitational waves demonstrated that double black hole (BH) binaries exist, and can host surprisingly massive objects (> 20 solar masses). Most theoretical models do not predict the existence of such massive BHs, and the formation channels of BH binaries are essentially unconstrained. Dynamically formed BH binaries are the most elusive ones: current models either neglect them or study them in idealized systems. With DEMOBLACK, I will draw the first satisfactory picture of BH binary demography, by modeling realistic BH dynamics in a well-motivated cosmological context. I propose a novel approach for the study of BH dynamics: I will simulate the formation of BH binaries in star clusters self-consistently, starting from the hydrodynamics of the parent molecular cloud and accounting for the impact of stellar evolution, feedback, and dynamics on BH binaries. The key tool of DEMOBLACK is SEVN, my new population-synthesis code. With SEVN, I predicted the formation of massive BHs from metal-poor stars, before the first direct detection of gravitational waves. I will interface SEVN with a hydrodynamical code and with an N-body code, to study the formation of BH binaries self-consistently. I will then model the history of BH binaries across cosmic time, accounting for the evolution of metallicity. This novel approach is decisive to break degeneracies between dynamically formed and primordial BH binaries, and to make predictions for future observations by ground-based and space-borne gravitational wave interferometers.
Summary
The first direct detection of gravitational waves demonstrated that double black hole (BH) binaries exist, and can host surprisingly massive objects (> 20 solar masses). Most theoretical models do not predict the existence of such massive BHs, and the formation channels of BH binaries are essentially unconstrained. Dynamically formed BH binaries are the most elusive ones: current models either neglect them or study them in idealized systems. With DEMOBLACK, I will draw the first satisfactory picture of BH binary demography, by modeling realistic BH dynamics in a well-motivated cosmological context. I propose a novel approach for the study of BH dynamics: I will simulate the formation of BH binaries in star clusters self-consistently, starting from the hydrodynamics of the parent molecular cloud and accounting for the impact of stellar evolution, feedback, and dynamics on BH binaries. The key tool of DEMOBLACK is SEVN, my new population-synthesis code. With SEVN, I predicted the formation of massive BHs from metal-poor stars, before the first direct detection of gravitational waves. I will interface SEVN with a hydrodynamical code and with an N-body code, to study the formation of BH binaries self-consistently. I will then model the history of BH binaries across cosmic time, accounting for the evolution of metallicity. This novel approach is decisive to break degeneracies between dynamically formed and primordial BH binaries, and to make predictions for future observations by ground-based and space-borne gravitational wave interferometers.
Max ERC Funding
1 994 764 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym DISEASEAVATARS
Project Modeling Disease through Cell Reprogramming: a Translational Approach to the Pathogenesis of Syndromes Caused by Symmetrical Gene Dosage Imbalances
Researcher (PI) Giuseppe Testa
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary The fundamental limitation in our ability to dissect human diseases is the scarce availability of human tissues at relevant disease stages, which is particularly salient for neural disorders. Somatic cell reprogramming is overcoming this limitation through the derivation of patient-specific induced pluripotent stem cells (iPSC) that can be differentiated into disease-relevant cell-types. Despite these tantalizing possibilities, there are critical issues to be addressed in order to secure iPSC-modeling as a robust platform for the interrogation of disease aetiology and the development of new therapies. These concern the taming of human genetic variation, the identification of differentiation stages in which to uncover and validate phenotypes, and finally their translational into drug discovery assays. This project confronts these challenges focusing on the paradigmatic case of two rare but uniquely informative disorders caused by symmetric gene dosage imbalances at 7q11.23: Williams Beuren Syndrome and the subset of autism spectrum disorders associated to 7q11.23 microduplication. The hallmark of WBS is a unique behavioral-cognitive profile characterized by hypersociability and intellectual disability in the face of comparatively well-preserved language abilities. Hence, the striking symmetry in genotype and phenotype between WBS and 7dupASD points to the 7q11.23 cluster as a surprisingly small subset of dosage-sensitive genes affecting social behaviour and cognition. We build on a large panel of iPSC lines that we already reprogrammed from a unique cohort of WBS and 7dupASD patients and whose characterization points to specific derangements at the level of transcriptional/epigenetic control, protein synthesis and synaptic dysfunction. Through the integration of transcriptomic and epigenomic profiling with targeted mass spectrometry and gene network prediction we propose an innovative drug discovery pipeline for the identification of new therapeutic leads.
Summary
The fundamental limitation in our ability to dissect human diseases is the scarce availability of human tissues at relevant disease stages, which is particularly salient for neural disorders. Somatic cell reprogramming is overcoming this limitation through the derivation of patient-specific induced pluripotent stem cells (iPSC) that can be differentiated into disease-relevant cell-types. Despite these tantalizing possibilities, there are critical issues to be addressed in order to secure iPSC-modeling as a robust platform for the interrogation of disease aetiology and the development of new therapies. These concern the taming of human genetic variation, the identification of differentiation stages in which to uncover and validate phenotypes, and finally their translational into drug discovery assays. This project confronts these challenges focusing on the paradigmatic case of two rare but uniquely informative disorders caused by symmetric gene dosage imbalances at 7q11.23: Williams Beuren Syndrome and the subset of autism spectrum disorders associated to 7q11.23 microduplication. The hallmark of WBS is a unique behavioral-cognitive profile characterized by hypersociability and intellectual disability in the face of comparatively well-preserved language abilities. Hence, the striking symmetry in genotype and phenotype between WBS and 7dupASD points to the 7q11.23 cluster as a surprisingly small subset of dosage-sensitive genes affecting social behaviour and cognition. We build on a large panel of iPSC lines that we already reprogrammed from a unique cohort of WBS and 7dupASD patients and whose characterization points to specific derangements at the level of transcriptional/epigenetic control, protein synthesis and synaptic dysfunction. Through the integration of transcriptomic and epigenomic profiling with targeted mass spectrometry and gene network prediction we propose an innovative drug discovery pipeline for the identification of new therapeutic leads.
Max ERC Funding
1 997 804 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym DissectPcG
Project Dissecting the Function of Multiple Polycomb Group Complexes in Establishing Transcriptional Identity
Researcher (PI) Diego PASINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS3, ERC-2016-COG
Summary The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Summary
The activities of the Polycomb group (PcG) of repressive chromatin modifiers are required to maintain correct transcriptional identity during development and differentiation. These activities are altered in a variety of tumours by gain- or loss-of-function mutations, whose mechanistic aspects still remain unclear.
PcGs can be classified in two major repressive complexes (PRC1 and PRC2) with common pathways but distinct biochemical activities. PRC1 catalyses histone H2A ubiquitination of lysine 119, and PRC2 tri-methylation of histone H3 lysine 27. However, PRC1 has a more heterogeneous composition than PRC2, with six mutually exclusive PCGF subunits (PCGF1–6) essential for assembling distinct PRC1 complexes that differ in subunit composition but share the same catalytic core.
While up to six different PRC1 forms can co-exist in a given cell, the molecular mechanisms regulating their activities and their relative contributions to general PRC1 function in any tissue/cell type remain largely unknown. In line with this biochemical heterogeneity, PRC1 retains broader biological functions than PRC2. Critically, however, no molecular analysis has yet been published that dissects the contribution of each PRC1 complex in regulating transcriptional identity.
We will take advantage of newly developed reagents and unpublished genetic models to target each of the six Pcgf genes in either embryonic stem cells or mouse adult tissues. This will systematically dissect the contributions of the different PRC1 complexes to chromatin profiles, gene expression programs, and cellular phenotypes during stem cell self-renewal, differentiation and adult tissue homeostasis. Overall, this will elucidate some of the fundamental mechanisms underlying the establishment and maintenance of cellular identity and will allow us to further determine the molecular links between PcG deregulation and cancer development in a tissue- and/or cell type–specific manner.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31