Project acronym GENEVOSYN
Project Reshuffling genes and genomes: from experimental evolution to synthetic biology in plants
Researcher (PI) Ralph Bock
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS9, ERC-2014-ADG
Summary GENEVOSYN has three highly ambitious objectives that will enable the engineering of new generations of crop plants. The project consists of three complementary workpackages (WPs) and will use both synthetic genomes and naturally available genomes as raw material for novel biotechnology and synthetic biology approaches. It will employ experimental gene and genome transfer as well as recently discovered natural (horizontal) genome transfer processes to generate new crop varieties and species. In WP1, the plastid (chloroplast) will be developed as a highly efficient platform for synthetic biology applications in plants. This will be accomplished by pursuing bottom-up and top-down synthetic biology approaches. They include the construction of large synthetic multigene operons towards introducing new complex metabolic pathways into plants, and the design, synthesis, assembly and booting up of radically redesigned synthetic genomes that ultimately will allow us to expand the genetic code and thereby the amino acid repertoire of plant cells. In WP2, GENEVOSYN aims at developing a technology for mitochondrial genome engineering in plants. The possibility to alter the genetic information in plant mitochondria by transformation would revolutionize both basic and applied research on plant mitochondria, and pave the way to harnessing the enormous potential of mitochondrial biotechnology. Finally, WP3 will exploit recently discovered horizontal genome transfer processes for the creation of novel crop species and the improvement of existing ones. To this end, we will use grafting-assisted horizontal genome transfer between crop species in the nightshade family (Solanaceae) to (i) generate new combinations of nuclear and plastid genomes and determine the impact of the plastid genome and specific plastid genes on plant growth and stress tolerance, and (ii) produce novel (synthetic) species that arise from the combination of entire nuclear genomes of existing species.
Summary
GENEVOSYN has three highly ambitious objectives that will enable the engineering of new generations of crop plants. The project consists of three complementary workpackages (WPs) and will use both synthetic genomes and naturally available genomes as raw material for novel biotechnology and synthetic biology approaches. It will employ experimental gene and genome transfer as well as recently discovered natural (horizontal) genome transfer processes to generate new crop varieties and species. In WP1, the plastid (chloroplast) will be developed as a highly efficient platform for synthetic biology applications in plants. This will be accomplished by pursuing bottom-up and top-down synthetic biology approaches. They include the construction of large synthetic multigene operons towards introducing new complex metabolic pathways into plants, and the design, synthesis, assembly and booting up of radically redesigned synthetic genomes that ultimately will allow us to expand the genetic code and thereby the amino acid repertoire of plant cells. In WP2, GENEVOSYN aims at developing a technology for mitochondrial genome engineering in plants. The possibility to alter the genetic information in plant mitochondria by transformation would revolutionize both basic and applied research on plant mitochondria, and pave the way to harnessing the enormous potential of mitochondrial biotechnology. Finally, WP3 will exploit recently discovered horizontal genome transfer processes for the creation of novel crop species and the improvement of existing ones. To this end, we will use grafting-assisted horizontal genome transfer between crop species in the nightshade family (Solanaceae) to (i) generate new combinations of nuclear and plastid genomes and determine the impact of the plastid genome and specific plastid genes on plant growth and stress tolerance, and (ii) produce novel (synthetic) species that arise from the combination of entire nuclear genomes of existing species.
Max ERC Funding
2 500 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym GENEWELL
Project Genetics and epigenetics of animal welfare
Researcher (PI) Per Ole Stokmann Jensen
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary Animal welfare is a topic of highest societal and scientific priority. Here, I propose to use genomic and epigenetic tools to provide a new perspective on the biology of animal welfare. This will reveal mechanisms involved in modulating stress responses. Groundbreaking aspects include new insights into how environmental conditions shape the orchestration of the genome by means of epigenetic mechanisms, and how this in turn modulates coping patterns of animals. The flexible epigenome comprises the interface between the environment and the genome. It is involved in both short- and long-term, including transgenerational, adaptations of animals. Hence, populations may adapt to environmental conditions over generations, using epigenetic mechanisms. The project will primarily be based on chickens, but will also be extended to a novel species, the dog. We will generate congenic chicken strains, where interesting alleles and epialleles will be fixed against a common background of either RJF or domestic genotypes. In these, we will apply a broad phenotyping strategy, to characterize the effects on different welfare relevant behaviors. Furthermore, we will characterize how environmental stress affects the epigenome of birds, and tissue samples from more than 500 birds from an intercross between RJF and White Leghorn layers will be used to perform an extensive meth-QTL-analysis. This will reveal environmental and genetic mechanisms affecting gene-specific methylation. The dog is another highly interesting species in the context of behavior genetics, because of its high inter-breed variation in behavior, and its compact and sequenced genome. We will set up a large-scale F2-intercross experiment and phenotype about 400 dogs in standardized behavioral tests. All individuals will be genotyped on about 1000 genetic markers, and this will be used for performing an extensive QTL-analysis in order to find new loci and alleles associated with personalities and coping patterns.
Summary
Animal welfare is a topic of highest societal and scientific priority. Here, I propose to use genomic and epigenetic tools to provide a new perspective on the biology of animal welfare. This will reveal mechanisms involved in modulating stress responses. Groundbreaking aspects include new insights into how environmental conditions shape the orchestration of the genome by means of epigenetic mechanisms, and how this in turn modulates coping patterns of animals. The flexible epigenome comprises the interface between the environment and the genome. It is involved in both short- and long-term, including transgenerational, adaptations of animals. Hence, populations may adapt to environmental conditions over generations, using epigenetic mechanisms. The project will primarily be based on chickens, but will also be extended to a novel species, the dog. We will generate congenic chicken strains, where interesting alleles and epialleles will be fixed against a common background of either RJF or domestic genotypes. In these, we will apply a broad phenotyping strategy, to characterize the effects on different welfare relevant behaviors. Furthermore, we will characterize how environmental stress affects the epigenome of birds, and tissue samples from more than 500 birds from an intercross between RJF and White Leghorn layers will be used to perform an extensive meth-QTL-analysis. This will reveal environmental and genetic mechanisms affecting gene-specific methylation. The dog is another highly interesting species in the context of behavior genetics, because of its high inter-breed variation in behavior, and its compact and sequenced genome. We will set up a large-scale F2-intercross experiment and phenotype about 400 dogs in standardized behavioral tests. All individuals will be genotyped on about 1000 genetic markers, and this will be used for performing an extensive QTL-analysis in order to find new loci and alleles associated with personalities and coping patterns.
Max ERC Funding
2 499 828 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym H-Unique
Project In search of uniqueness - harnessing anatomical hand variation
Researcher (PI) Sue BLACK
Host Institution (HI) UNIVERSITY OF LANCASTER
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary H-unique will be the first multimodal automated interrogation of visible hand anatomy, through analysis and interpretation of human variation. It will be an interdisciplinary project, supported by anatomists, anthropologists, geneticists, bioinformaticians, image analysts and computer scientists. We will investigate inherent and acquired variation in search of uniqueness, as the hand retains and displays a multiplicity of anatomical variants formed by different aetiologies (genetics, development, environment, accident etc).
Hard biometrics, such as fingerprints, are well understood and some soft biometrics are gaining traction within both biometric and forensic domains (e.g. superficial vein pattern, skin crease pattern, morphometry, scars, tattoos and pigmentation pattern). A combinatorial approach of soft and hard biometrics has not been previously attempted from images of the hand. We will pioneer the development of new methods that will release the full extent of variation locked within the visible anatomy of the human hand and reconstruct its discriminatory profile as a retro-engineered multimodal biometric. A significant step change is required in the science to both reliably and repeatably extract and compare anatomical information from large numbers of images especially when the hand is not in a standard position or when either the resolution or lighting in the image is not ideal.
Large datasets are vital for this work to be legally admissible. Through citizen engagement with science, this research will collect images from over 5,000 participants, creating an active, open source, ground-truth dataset. It will examine and address the effects of variable image conditions on data extraction and will design algorithms that permit auto-pattern searching across large numbers of stored images of variable quality. This will provide a major novel breakthrough in the study of anatomical variation, with wide-ranging, interdisciplinary and transdisciplinary impact.
Summary
H-unique will be the first multimodal automated interrogation of visible hand anatomy, through analysis and interpretation of human variation. It will be an interdisciplinary project, supported by anatomists, anthropologists, geneticists, bioinformaticians, image analysts and computer scientists. We will investigate inherent and acquired variation in search of uniqueness, as the hand retains and displays a multiplicity of anatomical variants formed by different aetiologies (genetics, development, environment, accident etc).
Hard biometrics, such as fingerprints, are well understood and some soft biometrics are gaining traction within both biometric and forensic domains (e.g. superficial vein pattern, skin crease pattern, morphometry, scars, tattoos and pigmentation pattern). A combinatorial approach of soft and hard biometrics has not been previously attempted from images of the hand. We will pioneer the development of new methods that will release the full extent of variation locked within the visible anatomy of the human hand and reconstruct its discriminatory profile as a retro-engineered multimodal biometric. A significant step change is required in the science to both reliably and repeatably extract and compare anatomical information from large numbers of images especially when the hand is not in a standard position or when either the resolution or lighting in the image is not ideal.
Large datasets are vital for this work to be legally admissible. Through citizen engagement with science, this research will collect images from over 5,000 participants, creating an active, open source, ground-truth dataset. It will examine and address the effects of variable image conditions on data extraction and will design algorithms that permit auto-pattern searching across large numbers of stored images of variable quality. This will provide a major novel breakthrough in the study of anatomical variation, with wide-ranging, interdisciplinary and transdisciplinary impact.
Max ERC Funding
2 495 378 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym HELIVAC
Project Overpowering helminth-mediated immune-modulation is a route towards vaccine development against these major animal pathogens
Researcher (PI) John Pius Dalton
Host Institution (HI) THE QUEEN'S UNIVERSITY OF BELFAST
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary "Helminth (worm) pathogens cause >55% of all animal diseases which result in enormous losses to the global agricultural economy. Since the use of chemical products to treat worms is not sustainable in the long term because of the continual emergence of drug-resistant parasites and consumer concerns about what they eat, control by vaccines is the most appropriate way forward. However, there are presently no vaccines for any animal or human helminth pathogen.
We hypothesise that the ability of helminth parasites to suppress the protective arm of the immune response explains why we have been unsuccessful in developing efficacious vaccines against these pathogens. During helminth infection the function of innate immune cells, dendritic cells (DCs) and macrophages, is manipulated by the parasite to create a T helper (Th) cell 2-driven immune response that is beneficial to its survival, while simultaneously suppressing the immunoprotective Th1-driven response. This helminth-induced immune modulation is induced by the secretion of specific parasite immunomodulatory molecules.
Focusing on the helminth that causes animal and human fascioliasis (liver fluke disease), we will ‘turn-the-table’ on this parasite by targeting its immunomodulatory mechanisms and develop vaccine formulations that induce potent protective Th1-inducing humoral and cellular immune responses.
The project involves both innovative and discovery approaches in the search for novel helminth immunomodulatory molecules, and a translational element that will bring these findings into a useful veterinary medicine application for the end-users, farmers and consumers. The breakthrough of this project, therefore, will not only be the development of a vaccine against liver fluke disease, but also the opening of a new route towards the control of many other major helminth pathogens of both animals and humans."
Summary
"Helminth (worm) pathogens cause >55% of all animal diseases which result in enormous losses to the global agricultural economy. Since the use of chemical products to treat worms is not sustainable in the long term because of the continual emergence of drug-resistant parasites and consumer concerns about what they eat, control by vaccines is the most appropriate way forward. However, there are presently no vaccines for any animal or human helminth pathogen.
We hypothesise that the ability of helminth parasites to suppress the protective arm of the immune response explains why we have been unsuccessful in developing efficacious vaccines against these pathogens. During helminth infection the function of innate immune cells, dendritic cells (DCs) and macrophages, is manipulated by the parasite to create a T helper (Th) cell 2-driven immune response that is beneficial to its survival, while simultaneously suppressing the immunoprotective Th1-driven response. This helminth-induced immune modulation is induced by the secretion of specific parasite immunomodulatory molecules.
Focusing on the helminth that causes animal and human fascioliasis (liver fluke disease), we will ‘turn-the-table’ on this parasite by targeting its immunomodulatory mechanisms and develop vaccine formulations that induce potent protective Th1-inducing humoral and cellular immune responses.
The project involves both innovative and discovery approaches in the search for novel helminth immunomodulatory molecules, and a translational element that will bring these findings into a useful veterinary medicine application for the end-users, farmers and consumers. The breakthrough of this project, therefore, will not only be the development of a vaccine against liver fluke disease, but also the opening of a new route towards the control of many other major helminth pathogens of both animals and humans."
Max ERC Funding
2 486 333 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym HOPSEP
Project Harnessing Oxygenic Photosynthesis for Sustainable Energy Production
Researcher (PI) Nathan Nelson
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), LS9, ERC-2011-ADG_20110310
Summary Oxygenic photosynthesis, that takes place in cyanobacteria algae and plants, provides most of the food and fuel on earth. The light stage of this process is driven by two photosystems. Photosystem II (PSII) that oxidizes water to O2 and 4 H+ and photosystem I (PSI) which in the light provides the most negative redox potential in nature that can drive numerous reactions including CO2 assimilation and hydrogen (H2) production. The structure of most of the complexes involved in oxygenic photosynthesis was solved in several laboratories including our own. Utilizing our plant PSI crystals we were able to generate a light dependent electric potential of up to 100 V. We will develop this system for designing biological based photoelectric devices. Recently, we discovered a marine phage that carries an operon encoding all PSI subunits. Generation, in synechocystis, of a phage-like PSI enabled the mutated complex to accept electrons from additional sources like respiratory cytochromes. This way a novel photorespiration, where PSI can substitute for cytochrome oxidase, is created. The wild type and mutant synechocystis PSI were crystallized and solved, confirming the suggested structural consequences. Moreover, several structural alterations in the mesophilic PSI were recorded. We designed a hydrogen producing bioreactor where the novel photorespiration will enable to utilize the organic material of the cell as an electron source for H2 production. We propose that in conjunction of engineering a Cyanobacterium strain with a temperature sensitive PSII, enhancing rates in its respiratory chain an efficient and sustainable hydrogen production can be achieved.
Summary
Oxygenic photosynthesis, that takes place in cyanobacteria algae and plants, provides most of the food and fuel on earth. The light stage of this process is driven by two photosystems. Photosystem II (PSII) that oxidizes water to O2 and 4 H+ and photosystem I (PSI) which in the light provides the most negative redox potential in nature that can drive numerous reactions including CO2 assimilation and hydrogen (H2) production. The structure of most of the complexes involved in oxygenic photosynthesis was solved in several laboratories including our own. Utilizing our plant PSI crystals we were able to generate a light dependent electric potential of up to 100 V. We will develop this system for designing biological based photoelectric devices. Recently, we discovered a marine phage that carries an operon encoding all PSI subunits. Generation, in synechocystis, of a phage-like PSI enabled the mutated complex to accept electrons from additional sources like respiratory cytochromes. This way a novel photorespiration, where PSI can substitute for cytochrome oxidase, is created. The wild type and mutant synechocystis PSI were crystallized and solved, confirming the suggested structural consequences. Moreover, several structural alterations in the mesophilic PSI were recorded. We designed a hydrogen producing bioreactor where the novel photorespiration will enable to utilize the organic material of the cell as an electron source for H2 production. We propose that in conjunction of engineering a Cyanobacterium strain with a temperature sensitive PSII, enhancing rates in its respiratory chain an efficient and sustainable hydrogen production can be achieved.
Max ERC Funding
2 487 000 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym HUMAN MICROBIOTA
Project Understanding and exploiting complex glycan metabolism in the human microbiota
Researcher (PI) Harry John Gilbert
Host Institution (HI) UNIVERSITY OF NEWCASTLE UPON TYNE
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The human large bowel is colonized by a community of microbes, the microbiota, which has a significant impact on human health and nutrition through the production of short chain fatty acids, and by interactions with the host immune system. The major nutrients available to these organisms are dietary glycans that are not metabolized by mammalian enzymes in the small intestines. Dietary and nutraceutical strategies can, potentially, be deployed to encourage the dominance of beneficial microbes in the microbiota (e.g. those producing health promoting SCFAs such as propionate and butyrate, and bacteria that have an anti-inflammatory impact through its interaction with the human immune system), ensuring that this microbial ecosystem has a positive influence on human health. This approach, however, is greatly restricted by a critical lack of understanding of the mechanisms by which complex glycans are metabolized by the microbiota. Significantly, the wealth of genomic and metagenomic microbiota sequence data now available, presents an exciting and unparalleled opportunity to make decisive advances in our understanding of glycan metabolism in the human large bowel. This project seeks to capitalize on this genomic information, in harness with recent functional data from my lab., to understand the mechanisms by which complex glycans are metabolized by the human microbiota. At a generic level, by providing insight into glycan resource allocation in the microbiota, this ERC advanced fellowship will make a significant contribution to protein evolutionary biology. The microbiota represents a highly concentrated reservoir of microbes that is continuously exposed to an extensive repertoire of diverse and highly complex glycans, the metabolism of which is essential for bacterial survival.
Summary
The human large bowel is colonized by a community of microbes, the microbiota, which has a significant impact on human health and nutrition through the production of short chain fatty acids, and by interactions with the host immune system. The major nutrients available to these organisms are dietary glycans that are not metabolized by mammalian enzymes in the small intestines. Dietary and nutraceutical strategies can, potentially, be deployed to encourage the dominance of beneficial microbes in the microbiota (e.g. those producing health promoting SCFAs such as propionate and butyrate, and bacteria that have an anti-inflammatory impact through its interaction with the human immune system), ensuring that this microbial ecosystem has a positive influence on human health. This approach, however, is greatly restricted by a critical lack of understanding of the mechanisms by which complex glycans are metabolized by the microbiota. Significantly, the wealth of genomic and metagenomic microbiota sequence data now available, presents an exciting and unparalleled opportunity to make decisive advances in our understanding of glycan metabolism in the human large bowel. This project seeks to capitalize on this genomic information, in harness with recent functional data from my lab., to understand the mechanisms by which complex glycans are metabolized by the human microbiota. At a generic level, by providing insight into glycan resource allocation in the microbiota, this ERC advanced fellowship will make a significant contribution to protein evolutionary biology. The microbiota represents a highly concentrated reservoir of microbes that is continuously exposed to an extensive repertoire of diverse and highly complex glycans, the metabolism of which is essential for bacterial survival.
Max ERC Funding
2 491 014 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym HyArchi
Project Targeting Root Hydraulic Architecture to improve Crops under Drought
Researcher (PI) Christophe Maurel
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary Water is the most limiting environmental factor for agricultural production worldwide and climate change exacerbates this threat. The HyArchi project will address this issue from a plant biology perspective and proposes new strategies to improve crop tolerance to drought.
The main objective is to optimize water uptake and transport in cereals affected by drought. HyArchi will target maize, a major crop and a foundational model in plant genetics and water relations that is grown in irrigation or rain-fed conditions.
HyArchi will consider three root traits: root system architecture, generated through continuous growth and branching; water transport; and environmental signalling. The first two traits yield the root hydraulic architecture. HyArchi will investigate how this architecture evolves in time and space by integrating local and systemic signals that communicate water availability.
HyArchi proposes two innovative molecular discovery approaches recently validated by my group in model plants. Genome-wide association studies will be used to uncover novel genes, with signalling functions acting on root hydraulics. Transcriptomic analyses of an experimental split-root system will be used to identify molecules (e.g. hormones, miRNAs) involved in systemic signalling and governing root growth and hydraulics.
These studies will be supported by key methodological developments. A semi-automated set of pressure chambers will be constructed to measure root hydraulics in multiple genotypes under highly controlled local root environments. Improved root image analyses will be coupled to mathematical modelling to represent local and systemic effects of water on root hydraulic architecture.
Ultimately, HyArchi will deliver enhanced knowledge on root water transport and its control by a set of new genes, with a description of their natural variation and impact on whole-plant drought responses. Importantly, this will allow introducing beneficial alleles into elite cultivars.
Summary
Water is the most limiting environmental factor for agricultural production worldwide and climate change exacerbates this threat. The HyArchi project will address this issue from a plant biology perspective and proposes new strategies to improve crop tolerance to drought.
The main objective is to optimize water uptake and transport in cereals affected by drought. HyArchi will target maize, a major crop and a foundational model in plant genetics and water relations that is grown in irrigation or rain-fed conditions.
HyArchi will consider three root traits: root system architecture, generated through continuous growth and branching; water transport; and environmental signalling. The first two traits yield the root hydraulic architecture. HyArchi will investigate how this architecture evolves in time and space by integrating local and systemic signals that communicate water availability.
HyArchi proposes two innovative molecular discovery approaches recently validated by my group in model plants. Genome-wide association studies will be used to uncover novel genes, with signalling functions acting on root hydraulics. Transcriptomic analyses of an experimental split-root system will be used to identify molecules (e.g. hormones, miRNAs) involved in systemic signalling and governing root growth and hydraulics.
These studies will be supported by key methodological developments. A semi-automated set of pressure chambers will be constructed to measure root hydraulics in multiple genotypes under highly controlled local root environments. Improved root image analyses will be coupled to mathematical modelling to represent local and systemic effects of water on root hydraulic architecture.
Ultimately, HyArchi will deliver enhanced knowledge on root water transport and its control by a set of new genes, with a description of their natural variation and impact on whole-plant drought responses. Importantly, this will allow introducing beneficial alleles into elite cultivars.
Max ERC Funding
2 498 100 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym HyLife
Project Exploiting hybrids between annual and perennial plant species to identify genes conferring agronomically important traits
Researcher (PI) George Michael Coupland
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary Flowering plants exhibit a variety of different life cycles. This variation contributes in nature to adaptation to diverse environments and in agriculture to optimising crop yield. Annual monocarpic species flower once during their life, produce seeds and then undergo generalized senescence leading to death of the plant. By contrast polycarpic perennials survive seed production and live for many years flowering repeatedly. Most of our major crops are monocarpic annuals but perennials predominate in many ecological niches. Perennials exhibit phenotypic traits that would be advantageous for crops, such as an extended growing season, long duration of flowering and seed set as well as longer roots that more efficiently utilize nutrients and water supply. The high productivity of perennials explains their current use as sources of biomass. I propose here to use the progeny of hybrids between annual and perennial species in the Brassicaceae to isolate genes that confer key differences between these life histories. The utility of such genes in improving annual crops will then be tested. Arabis alpina and Arabis montbretiana are sister species that are respectively perennial and annual. We produced hybrids between these species and from them derived segregating populations by backcrossing. Here I propose to extensively genotype and phenotype these populations to identify genes promoting or suppressing senescence after flowering as well as those controlling the duration and extent of flowering. Orthologues of these genes will be identified in closely related Brassica species and alleles conferring perennial traits introduced into annual oil seed rape using genetic as well as transgenic strategies. Particularly those genes suppressing senescence and extending the duration of flowering will be tested for their effects on yield. This knowledge-based approach to introducing perennial traits into annual crops is expected to generate novel phenotypic variation that enhances yield.
Summary
Flowering plants exhibit a variety of different life cycles. This variation contributes in nature to adaptation to diverse environments and in agriculture to optimising crop yield. Annual monocarpic species flower once during their life, produce seeds and then undergo generalized senescence leading to death of the plant. By contrast polycarpic perennials survive seed production and live for many years flowering repeatedly. Most of our major crops are monocarpic annuals but perennials predominate in many ecological niches. Perennials exhibit phenotypic traits that would be advantageous for crops, such as an extended growing season, long duration of flowering and seed set as well as longer roots that more efficiently utilize nutrients and water supply. The high productivity of perennials explains their current use as sources of biomass. I propose here to use the progeny of hybrids between annual and perennial species in the Brassicaceae to isolate genes that confer key differences between these life histories. The utility of such genes in improving annual crops will then be tested. Arabis alpina and Arabis montbretiana are sister species that are respectively perennial and annual. We produced hybrids between these species and from them derived segregating populations by backcrossing. Here I propose to extensively genotype and phenotype these populations to identify genes promoting or suppressing senescence after flowering as well as those controlling the duration and extent of flowering. Orthologues of these genes will be identified in closely related Brassica species and alleles conferring perennial traits introduced into annual oil seed rape using genetic as well as transgenic strategies. Particularly those genes suppressing senescence and extending the duration of flowering will be tested for their effects on yield. This knowledge-based approach to introducing perennial traits into annual crops is expected to generate novel phenotypic variation that enhances yield.
Max ERC Funding
2 490 624 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ImmunityByPairDesign
Project Design and redesign of a plant immune receptor complex
Researcher (PI) Jonathan Jones
Host Institution (HI) THE SAINSBURY LABORATORY
Call Details Advanced Grant (AdG), LS9, ERC-2014-ADG
Summary This project will (1) reveal design principles of paired immune receptor complexes and (2) elevate plant disease resistance by enabling design of immune receptors with new recognition capacities.
Plant immunity is triggered upon pathogen detection by dedicated immune receptors. Like animal Nod-like receptors (NLRs), plant immune receptors have a modular structure and can work in pairs, both of which are required for defence activation upon recognition of specific pathogen proteins. How such intracellular immune receptor complexes activate defence solely upon recognition of microbial molecules is poorly understood.
Using novel high risk/high gain methods such as domain/domain cross-linking with mass spectrometry (XL-MS) and cryo-electron microscopy, as well as X-ray crystallography, genetics and cell biology, we will define at a structural level the domain/domain interactions within an immune receptor complex, and how these change upon pathogen perception. The Arabidopsis RPS4/RRS1 immune receptor acts in the cell nucleus to detect when pathogen effectors target WRKY transcription factors, converting effector interactions with the RRS1 WRKY domain into defence activation via RPS4. We will reveal the intra-molecular reconfigurations required for signalling and thus tackle a problem of broad significance, both for immune receptors, and for other intracellular receptors that are activated by ligand-dependent release from negative regulation.
We will also create and test derivatives of RPS4/RRS1 or related complexes that are designed to respond to effectors that target other host protein domains. As Richard Feynman said, “What I cannot create, I do not understand”. By designing immune receptors to recognize other pathogen effectors, we will test models of how plant immune receptors activate defence, but only upon effector recognition. This second objective is ambitious and high risk/high gain, but potentially game-changing for crop disease control.
Summary
This project will (1) reveal design principles of paired immune receptor complexes and (2) elevate plant disease resistance by enabling design of immune receptors with new recognition capacities.
Plant immunity is triggered upon pathogen detection by dedicated immune receptors. Like animal Nod-like receptors (NLRs), plant immune receptors have a modular structure and can work in pairs, both of which are required for defence activation upon recognition of specific pathogen proteins. How such intracellular immune receptor complexes activate defence solely upon recognition of microbial molecules is poorly understood.
Using novel high risk/high gain methods such as domain/domain cross-linking with mass spectrometry (XL-MS) and cryo-electron microscopy, as well as X-ray crystallography, genetics and cell biology, we will define at a structural level the domain/domain interactions within an immune receptor complex, and how these change upon pathogen perception. The Arabidopsis RPS4/RRS1 immune receptor acts in the cell nucleus to detect when pathogen effectors target WRKY transcription factors, converting effector interactions with the RRS1 WRKY domain into defence activation via RPS4. We will reveal the intra-molecular reconfigurations required for signalling and thus tackle a problem of broad significance, both for immune receptors, and for other intracellular receptors that are activated by ligand-dependent release from negative regulation.
We will also create and test derivatives of RPS4/RRS1 or related complexes that are designed to respond to effectors that target other host protein domains. As Richard Feynman said, “What I cannot create, I do not understand”. By designing immune receptors to recognize other pathogen effectors, we will test models of how plant immune receptors activate defence, but only upon effector recognition. This second objective is ambitious and high risk/high gain, but potentially game-changing for crop disease control.
Max ERC Funding
2 499 978 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym LIGHTDRIVENP450S
Project Light-driven Chemical Synthesis using Cytochrome P450s
Researcher (PI) Birger Lindberg Møller
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The goal of this proposed research initiative is to engineer chloroplasts into production units for high value bio-active natural products. The first aim is to re-route the biosynthetic pathways for these compounds into the chloroplast and to boost compound formation by optimizing and channeling reducing power from photosystem I into to the energy demanding steps. By these measures we aim to overcome the inherent limitations in plants to channel photosynthetic fixed carbon and reducing power directly into production of desired bioactive natural products. Our production targets are diterpenoids with the anti-cancer drug ingenol-3-angelate and the adenylyl cyclase activator forskolin as the two chosen test compounds. Formation of the complicated hydroxylated core structures of these compounds is catalyzed by diterpenoid synthases and cytochrome P450s. These will be identified and expressed in the chloroplast. The ultimate aim is to construct a single supramolecular enzyme complex effectively using solar energy to produce complex diterpenoids. This will be accomplished by tethering the terpenoid synthases and the key P450 enzymes directly to the photosystem I complex using some of the small membrane spanning subunits of photosystem I as membrane anchors. The experimental systems used will initially be transient expression in tobacco and then move to stably transformed moss (Physcomitrella patens). The production system is built on the “share your parts” principle of synthetic biology and the aim is to construct a modular ‘tool box’ as template for tailoring the synthesis of a whole range of valuable bioactive diterpenoids. Typically, these are difficult to obtain because they are produced in very low amounts in plants difficult to cultivate. The proposal opens up entirely new research horizons and removes current bottlenecks in industrial exploitation. The technology holds the promise of true sustainability as it is driven by solar power and CO2.
Summary
The goal of this proposed research initiative is to engineer chloroplasts into production units for high value bio-active natural products. The first aim is to re-route the biosynthetic pathways for these compounds into the chloroplast and to boost compound formation by optimizing and channeling reducing power from photosystem I into to the energy demanding steps. By these measures we aim to overcome the inherent limitations in plants to channel photosynthetic fixed carbon and reducing power directly into production of desired bioactive natural products. Our production targets are diterpenoids with the anti-cancer drug ingenol-3-angelate and the adenylyl cyclase activator forskolin as the two chosen test compounds. Formation of the complicated hydroxylated core structures of these compounds is catalyzed by diterpenoid synthases and cytochrome P450s. These will be identified and expressed in the chloroplast. The ultimate aim is to construct a single supramolecular enzyme complex effectively using solar energy to produce complex diterpenoids. This will be accomplished by tethering the terpenoid synthases and the key P450 enzymes directly to the photosystem I complex using some of the small membrane spanning subunits of photosystem I as membrane anchors. The experimental systems used will initially be transient expression in tobacco and then move to stably transformed moss (Physcomitrella patens). The production system is built on the “share your parts” principle of synthetic biology and the aim is to construct a modular ‘tool box’ as template for tailoring the synthesis of a whole range of valuable bioactive diterpenoids. Typically, these are difficult to obtain because they are produced in very low amounts in plants difficult to cultivate. The proposal opens up entirely new research horizons and removes current bottlenecks in industrial exploitation. The technology holds the promise of true sustainability as it is driven by solar power and CO2.
Max ERC Funding
2 499 699 €
Duration
Start date: 2013-03-01, End date: 2019-02-28