Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Country Spain
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 3D-FIREFLUC
Project Taming the particle transport in magnetized plasmas via perturbative fields
Researcher (PI) Eleonora VIEZZER
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Country Spain
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Summary
Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Max ERC Funding
1 512 250 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym 3D-QUEST
Project 3D-Quantum Integrated Optical Simulation
Researcher (PI) Fabio Sciarrino
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Country Italy
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary "Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.
The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.
A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.
A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.
A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.
3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."
Summary
"Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.
The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.
A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.
A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.
A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.
3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."
Max ERC Funding
1 474 800 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym AGEnTh
Project Atomic Gauge and Entanglement Theories
Researcher (PI) Marcello DALMONTE
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Country Italy
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary AGEnTh is an interdisciplinary proposal which aims at theoretically investigating atomic many-body systems (cold atoms and trapped ions) in close connection to concepts from quantum information, condensed matter, and high energy physics. The main goals of this programme are to:
I) Find to scalable schemes for the measurements of entanglement properties, and in particular entanglement spectra, by proposing a shifting paradigm to access entanglement focused on entanglement Hamiltonians and field theories instead of probing density matrices;
II) Show how atomic gauge theories (including dynamical gauge fields) are ideal candidates for the realization of long-sought, highly-entangled states of matter, in particular topological superconductors supporting parafermion edge modes, and novel classes of quantum spin liquids emerging from clustering;
III) Develop new implementation strategies for the realization of gauge symmetries of paramount importance, such as discrete and SU(N)xSU(2)xU(1) groups, and establish a theoretical framework for the understanding of atomic physics experiments within the light-from-chaos scenario pioneered in particle physics.
These objectives are at the cutting-edge of fundamental science, and represent a coherent effort aimed at underpinning unprecedented regimes of strongly interacting quantum matter by addressing the basic aspects of probing, many-body physics, and implementations. The results are expected to (i) build up and establish qualitatively new synergies between the aforementioned communities, and (ii) stimulate an intense theoretical and experimental activity focused on both entanglement and atomic gauge theories.
In order to achieve those, AGEnTh builds: (1) on my background working at the interface between atomic physics and quantum optics from one side, and many-body theory on the other, and (2) on exploratory studies which I carried out to mitigate the conceptual risks associated with its high-risk/high-gain goals.
Summary
AGEnTh is an interdisciplinary proposal which aims at theoretically investigating atomic many-body systems (cold atoms and trapped ions) in close connection to concepts from quantum information, condensed matter, and high energy physics. The main goals of this programme are to:
I) Find to scalable schemes for the measurements of entanglement properties, and in particular entanglement spectra, by proposing a shifting paradigm to access entanglement focused on entanglement Hamiltonians and field theories instead of probing density matrices;
II) Show how atomic gauge theories (including dynamical gauge fields) are ideal candidates for the realization of long-sought, highly-entangled states of matter, in particular topological superconductors supporting parafermion edge modes, and novel classes of quantum spin liquids emerging from clustering;
III) Develop new implementation strategies for the realization of gauge symmetries of paramount importance, such as discrete and SU(N)xSU(2)xU(1) groups, and establish a theoretical framework for the understanding of atomic physics experiments within the light-from-chaos scenario pioneered in particle physics.
These objectives are at the cutting-edge of fundamental science, and represent a coherent effort aimed at underpinning unprecedented regimes of strongly interacting quantum matter by addressing the basic aspects of probing, many-body physics, and implementations. The results are expected to (i) build up and establish qualitatively new synergies between the aforementioned communities, and (ii) stimulate an intense theoretical and experimental activity focused on both entanglement and atomic gauge theories.
In order to achieve those, AGEnTh builds: (1) on my background working at the interface between atomic physics and quantum optics from one side, and many-body theory on the other, and (2) on exploratory studies which I carried out to mitigate the conceptual risks associated with its high-risk/high-gain goals.
Max ERC Funding
1 055 317 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym AGINGSEXDIFF
Project Aging Differently: Understanding Sex Differences in Reproductive, Demographic and Functional Senescence
Researcher (PI) Alexei Maklakov
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Summary
Sex differences in life span and aging are ubiquitous across the animal kingdom and represent a
long-standing challenge in evolutionary biology. In most species, including humans, sexes differ not
only in how long they live and when they start to senesce, but also in how they react to
environmental interventions aimed at prolonging their life span or decelerating the onset of aging.
Therefore, sex differences in life span and aging have important implications beyond the questions
posed by fundamental science. Both evolutionary reasons and medical implications of sex
differences in demographic, reproductive and physiological senescence are and will be crucial
targets of present and future research in the biology of aging. Here I propose a two-step approach
that can provide a significant breakthrough in our understanding of the biological basis of sex
differences in aging. First, I propose to resolve the age-old conundrum regarding the role of sexspecific
mortality rate in sex differences in aging by developing a series of targeted experimental
evolution studies in a novel model organism – the nematode, Caenorhabditis remanei. Second, I
address the role of intra-locus sexual conflict in the evolution of aging by combining novel
methodology from nutritional ecology – the Geometric Framework – with artificial selection
approach using the cricket Teleogryllus commodus and the fruitfly Drosophila melanogaster. I will
directly test the hypothesis that intra-locus sexual conflict mediates aging by restricting the
adaptive evolution of diet choice. By combining techniques from evolutionary biology and
nutritional ecology, this proposal will raise EU’s profile in integrative research, and contribute to
the training of young scientists in this rapidly developing field.
Max ERC Funding
1 391 904 €
Duration
Start date: 2010-12-01, End date: 2016-05-31
Project acronym AISENS
Project New generation of high sensitive atom interferometers
Researcher (PI) Marco Fattori
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Country Italy
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Summary
Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Max ERC Funding
1 068 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ALLELECHOKER
Project DNA binding proteins for treatment of gain of function mutations
Researcher (PI) Enrico Maria Surace
Host Institution (HI) FONDAZIONE TELETHON
Country Italy
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Zinc finger (ZF) and transcription activator-like effector (TALE) based technologies are been allowing the tailored design of “artificial” DNA-binding proteins targeted to specific and unique DNA genomic sequences. Coupling DNA binding proteins to effectors domains enables the constitution of DNA binding factors for genomic directed transcriptional modulation or targeted genomic editing. We have demonstrated that pairing a ZF DNA binding protein to the transcriptional repressor Kruppel-associated box enables in vivo, the transcriptional repression of one of the most abundantly expressed gene in mammals, the human rhodopsin gene (RHO). We propose to generate RHO DNA binding silencers (“AlleleChoker”), which inactivate RHO either by transcriptional repression or targeted genome modification, irrespectively to wild-type or mutated alleles (mutational-independent approach), and combine RHO endogenous silencing to RHO replacement (silencing-replacement strategy). With this strategy in principle a single bimodal bio-therapeutic will enable the correction of any photoreceptor disease associated with RHO mutation. Adeno-associated viral (AAV) vector-based delivery will be used for photoreceptors gene transfer. Specifically our objectives are: 1) Construction of transcriptional repressors and nucleases for RHO silencing. Characterization and comparison of RHO silencing mediated by transcriptional repressors (ZFR/ TALER) or nucleases (ZFN/ TALEN) to generate genomic directed inactivation by non-homologous end-joining (NHEJ), and refer these results to RNA interference (RNAi) targeted to RHO; 2) RHO silencing in photoreceptors. to determine genome-wide DNA binding specificity of silencers, chromatin modifications and expression profile on human retinal explants; 3) Tuning silencing and replacement. To determine the impact of gene silencing-replacement strategy on disease progression in animal models of autosomal dominant retinitis pigmentosa (adRP) associated to RHO mutations
Summary
Zinc finger (ZF) and transcription activator-like effector (TALE) based technologies are been allowing the tailored design of “artificial” DNA-binding proteins targeted to specific and unique DNA genomic sequences. Coupling DNA binding proteins to effectors domains enables the constitution of DNA binding factors for genomic directed transcriptional modulation or targeted genomic editing. We have demonstrated that pairing a ZF DNA binding protein to the transcriptional repressor Kruppel-associated box enables in vivo, the transcriptional repression of one of the most abundantly expressed gene in mammals, the human rhodopsin gene (RHO). We propose to generate RHO DNA binding silencers (“AlleleChoker”), which inactivate RHO either by transcriptional repression or targeted genome modification, irrespectively to wild-type or mutated alleles (mutational-independent approach), and combine RHO endogenous silencing to RHO replacement (silencing-replacement strategy). With this strategy in principle a single bimodal bio-therapeutic will enable the correction of any photoreceptor disease associated with RHO mutation. Adeno-associated viral (AAV) vector-based delivery will be used for photoreceptors gene transfer. Specifically our objectives are: 1) Construction of transcriptional repressors and nucleases for RHO silencing. Characterization and comparison of RHO silencing mediated by transcriptional repressors (ZFR/ TALER) or nucleases (ZFN/ TALEN) to generate genomic directed inactivation by non-homologous end-joining (NHEJ), and refer these results to RNA interference (RNAi) targeted to RHO; 2) RHO silencing in photoreceptors. to determine genome-wide DNA binding specificity of silencers, chromatin modifications and expression profile on human retinal explants; 3) Tuning silencing and replacement. To determine the impact of gene silencing-replacement strategy on disease progression in animal models of autosomal dominant retinitis pigmentosa (adRP) associated to RHO mutations
Max ERC Funding
1 354 840 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym AngioGenesHD
Project Epistasis analysis of angiogenes with high cellular definition
Researcher (PI) Rui Miguel Dos Santos Benedito
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONES CARDIOVASCULARES CARLOS III (F.S.P.)
Country Spain
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Summary
Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Max ERC Funding
1 481 375 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym ANGIOPLACE
Project Expression and Methylation Status of Genes Regulating Placental Angiogenesis in Normal, Cloned, IVF and Monoparental Sheep Foetuses
Researcher (PI) Grazyna Ewa Ptak
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TERAMO
Country Italy
Call Details Starting Grant (StG), LS7, ERC-2007-StG
Summary Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Summary
Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Max ERC Funding
363 600 €
Duration
Start date: 2008-10-01, End date: 2012-06-30
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Country Italy
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31