Project acronym Allelic Regulation
Project Revealing Allele-level Regulation and Dynamics using Single-cell Gene Expression Analyses
Researcher (PI) Thore Rickard Hakan Sandberg
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary As diploid organisms inherit one gene copy from each parent, a gene can be expressed from both alleles (biallelic) or from only one allele (monoallelic). Although transcription from both alleles is detected for most genes in cell population experiments, little is known about allele-specific expression in single cells and its phenotypic consequences. To answer fundamental questions about allelic transcription heterogeneity in single cells, this research program will focus on single-cell transcriptome analyses with allelic-origin resolution. To this end, we will investigate both clonally stable and dynamic random monoallelic expression across a large number of cell types, including cells from embryonic and adult stages. This research program will be accomplished with the novel single-cell RNA-seq method developed within my lab to obtain quantitative, genome-wide gene expression measurement. To distinguish between mitotically stable and dynamic patterns of allelic expression, we will analyze large numbers a clonally related cells per cell type, from both primary cultures (in vitro) and using transgenic models to obtain clonally related cells in vivo.
The biological significance of the research program is first an understanding of allelic transcription, including the nature and extent of random monoallelic expression across in vivo tissues and cell types. These novel insights into allelic transcription will be important for an improved understanding of how variable phenotypes (e.g. incomplete penetrance and variable expressivity) can arise in genetically identical individuals. Additionally, the single-cell transcriptome analyses of clonally related cells in vivo will provide unique insights into the clonality of gene expression per se.
Summary
As diploid organisms inherit one gene copy from each parent, a gene can be expressed from both alleles (biallelic) or from only one allele (monoallelic). Although transcription from both alleles is detected for most genes in cell population experiments, little is known about allele-specific expression in single cells and its phenotypic consequences. To answer fundamental questions about allelic transcription heterogeneity in single cells, this research program will focus on single-cell transcriptome analyses with allelic-origin resolution. To this end, we will investigate both clonally stable and dynamic random monoallelic expression across a large number of cell types, including cells from embryonic and adult stages. This research program will be accomplished with the novel single-cell RNA-seq method developed within my lab to obtain quantitative, genome-wide gene expression measurement. To distinguish between mitotically stable and dynamic patterns of allelic expression, we will analyze large numbers a clonally related cells per cell type, from both primary cultures (in vitro) and using transgenic models to obtain clonally related cells in vivo.
The biological significance of the research program is first an understanding of allelic transcription, including the nature and extent of random monoallelic expression across in vivo tissues and cell types. These novel insights into allelic transcription will be important for an improved understanding of how variable phenotypes (e.g. incomplete penetrance and variable expressivity) can arise in genetically identical individuals. Additionally, the single-cell transcriptome analyses of clonally related cells in vivo will provide unique insights into the clonality of gene expression per se.
Max ERC Funding
1 923 060 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym ANTIBODYPAIN
Project Autoantibodies and chronic pain - Unraveling new mechanisms contributing to pain in rheumatic disease
Researcher (PI) Camilla SVENSSON
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS7, ERC-2019-COG
Summary Pain is one of the most problematic symptoms of rheumatic disease such as rheumatoid arthritis (RA) and fibromyalgia (FM). We have earlier discovered that antibodies (immunoglobulin, IgG) purified from blood of seropositive rheumatoid arthritis (RA) patients induce pain-like behavior when transferred to mice, independent of inflammatory reactions. Even though FM is not considered an autoimmune disease, it has been suggested that neuroimmune dysregulation contribute to the pathogenesis. Therefore, we purified IgG from FM patients and found that also IgG from FM patients, but not healthy controls, have pronociceptive properties in mice, and surprisingly, bind to satellite glial cells in dorsal root ganglia. Our findings highlights the importance of expanding our view on which chronic pain conditions that could have an underlying autoimmunity as part of the pain pathology. Thus, the overall objective of this project is to investigate both general, and disease specific, pain-inducing mechanisms mediated by RA and FM IgG.
Objective 1. Investigate how IgG from RA and FM patients induce pain-like behavior after transfer to mice
Objective 2. Search for RA and FM IgG induced maladaptive changes in sensory neurons that mediate hyperexcitability and long-term pain-like behavior
Using patient and healthy control samples, in vivo mouse behavioral assays, primary neuronal and non-neuronal cell cultures together with stat-of-the-art methodology, we will investigate how RA and FM-associated autoantibodies alter sensory neuronal excitability. If successful our project will not only challenge the view of how antibodies can contribute to pain but also pin-point specific mechanisms by which disease-relevant antibodies induce and maintain pain independent of previously described inflammatory mechanisms. Such findings promise to resolve currently unanswered questions concerning symptoms of pain in RA and FM, and to pave the way for the development of new pain-relieving therapies.
Summary
Pain is one of the most problematic symptoms of rheumatic disease such as rheumatoid arthritis (RA) and fibromyalgia (FM). We have earlier discovered that antibodies (immunoglobulin, IgG) purified from blood of seropositive rheumatoid arthritis (RA) patients induce pain-like behavior when transferred to mice, independent of inflammatory reactions. Even though FM is not considered an autoimmune disease, it has been suggested that neuroimmune dysregulation contribute to the pathogenesis. Therefore, we purified IgG from FM patients and found that also IgG from FM patients, but not healthy controls, have pronociceptive properties in mice, and surprisingly, bind to satellite glial cells in dorsal root ganglia. Our findings highlights the importance of expanding our view on which chronic pain conditions that could have an underlying autoimmunity as part of the pain pathology. Thus, the overall objective of this project is to investigate both general, and disease specific, pain-inducing mechanisms mediated by RA and FM IgG.
Objective 1. Investigate how IgG from RA and FM patients induce pain-like behavior after transfer to mice
Objective 2. Search for RA and FM IgG induced maladaptive changes in sensory neurons that mediate hyperexcitability and long-term pain-like behavior
Using patient and healthy control samples, in vivo mouse behavioral assays, primary neuronal and non-neuronal cell cultures together with stat-of-the-art methodology, we will investigate how RA and FM-associated autoantibodies alter sensory neuronal excitability. If successful our project will not only challenge the view of how antibodies can contribute to pain but also pin-point specific mechanisms by which disease-relevant antibodies induce and maintain pain independent of previously described inflammatory mechanisms. Such findings promise to resolve currently unanswered questions concerning symptoms of pain in RA and FM, and to pave the way for the development of new pain-relieving therapies.
Max ERC Funding
1 993 763 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym BIOMENDELIAN
Project Linking Cardiometabolic Disease and Cancer in the Level of Genetics, Circulating Biomarkers, Microbiota and Environmental Risk Factors
Researcher (PI) Marju Orho-Melander
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary Cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity, collectively referred to as cardiometabolic disease, together with cancer are the major morbidities and causes of death. With few exceptions, research on cardiometabolic disease and cancer is funded, studied and clinically applied separately without fully taking advantage of knowledge on common pathways and treatment targets through interdisciplinary synergies. The purpose of this proposal is to reveal causal factors connecting and disconnecting cardiometabolic diseases and cancer, and to understand interactions between gut microbiota, host diet and genetic susceptibility in a comprehensive prospective cohort study design to subsequently allow design of intervention strategies to guide more personalized disease prevention.
1. We investigate causality between genetic risk factors for cardiometabolic disease associated traits and future incidence of T2D, CVD, cancer (total/breast/colon/prostate) and mortality (total, CVD- and cancer mortality), searching for causal factors in a prospective cohort with >15 y follow-up (N>30,000, incident cases N=3550, 4713, 5975, 6115 for T2D, CVD, cancer, mortality)
2. For the first time in a large population (N=6000), we investigate how gut and oral microbiome are regulated by dietary factors, gut satiety peptides and host genetics, and how such connections relate to cardiometabolic disease associated traits and cancer
3. We investigate the role of diet and gene-diet interactions of importance for cardiometabolic disease and cancer
4. We perform genotype, biomarker and gut microbiota based diet intervention studies.
This inter-disciplinary project contributes to biological understanding of basic disease mechanisms and takes steps towards better possibilities to prevent and treat individuals at high risk for cardiometabolic disease, cancer and death.
Summary
Cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity, collectively referred to as cardiometabolic disease, together with cancer are the major morbidities and causes of death. With few exceptions, research on cardiometabolic disease and cancer is funded, studied and clinically applied separately without fully taking advantage of knowledge on common pathways and treatment targets through interdisciplinary synergies. The purpose of this proposal is to reveal causal factors connecting and disconnecting cardiometabolic diseases and cancer, and to understand interactions between gut microbiota, host diet and genetic susceptibility in a comprehensive prospective cohort study design to subsequently allow design of intervention strategies to guide more personalized disease prevention.
1. We investigate causality between genetic risk factors for cardiometabolic disease associated traits and future incidence of T2D, CVD, cancer (total/breast/colon/prostate) and mortality (total, CVD- and cancer mortality), searching for causal factors in a prospective cohort with >15 y follow-up (N>30,000, incident cases N=3550, 4713, 5975, 6115 for T2D, CVD, cancer, mortality)
2. For the first time in a large population (N=6000), we investigate how gut and oral microbiome are regulated by dietary factors, gut satiety peptides and host genetics, and how such connections relate to cardiometabolic disease associated traits and cancer
3. We investigate the role of diet and gene-diet interactions of importance for cardiometabolic disease and cancer
4. We perform genotype, biomarker and gut microbiota based diet intervention studies.
This inter-disciplinary project contributes to biological understanding of basic disease mechanisms and takes steps towards better possibilities to prevent and treat individuals at high risk for cardiometabolic disease, cancer and death.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BloodVariome
Project Genetic variation exposes regulators of blood cell formation in vivo in humans
Researcher (PI) Bjoern Erik Ake NILSSON
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS7, ERC-2017-COG
Summary The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Summary
The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CAPTURE
Project CApturing Paradata for documenTing data creation and Use for the REsearch of the future
Researcher (PI) Isto HUVILA
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary "Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Summary
"Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Max ERC Funding
1 944 162 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym CellTrack
Project Cellular Position Tracking Using DNA Origami Barcodes
Researcher (PI) Bjoern HoeGBERG
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary The research I propose here will provide an enabling technology; spatially resolved transcriptomics, to address important problems in cell- and developmental-biology, in particular: How are stem cells in the skin and gut proliferating without turning into cancers? How are differentiated cells related, in their transcriptome and spatial positions, to their progenitors?
To investigate these problems on a molecular level and open up paths to find completely new spatiotemporal interdependencies in complex biological systems, I propose to use our newly developed DNA-origami strategy (Benson et al, Nature, 523 p. 441 (2015) ), combined with a combinatorial cloning technique, to build a new method for deep mRNA sequencing of tissue with single-cell resolution. These new types of origami are stable in physiological salt conditions and opens up their use in in-vivo applications.
In DNA-origami we can control the exact spatial position of all nucleotides. By folding the scaffold to display sequences for hybridization of fluorophores conjugated to DNA, we can create optical nano-barcodes. By using structures made out of DNA, the patterns of the optical barcodes will be readable both by imaging and by sequencing, thus enabling the creation of a mapping between cell locations in an organ and the mRNA expression of those cells.
We will use the method to perform spatially resolved transcriptomics in small organs: the mouse hair follicle, and small intestine crypt, and also perform the procedure for multiple samples collected at different time points. This will enable a high-dimensional data analysis that most likely will expose previously unknown dependencies that would provide completely new knowledge about how these biological systems work. By studying these systems, we will uncover much more information on how stem cells contribute to regeneration, the issue of de-differentiation that is a common theme in these organs and the effect this might have on the origin of cancer.
Summary
The research I propose here will provide an enabling technology; spatially resolved transcriptomics, to address important problems in cell- and developmental-biology, in particular: How are stem cells in the skin and gut proliferating without turning into cancers? How are differentiated cells related, in their transcriptome and spatial positions, to their progenitors?
To investigate these problems on a molecular level and open up paths to find completely new spatiotemporal interdependencies in complex biological systems, I propose to use our newly developed DNA-origami strategy (Benson et al, Nature, 523 p. 441 (2015) ), combined with a combinatorial cloning technique, to build a new method for deep mRNA sequencing of tissue with single-cell resolution. These new types of origami are stable in physiological salt conditions and opens up their use in in-vivo applications.
In DNA-origami we can control the exact spatial position of all nucleotides. By folding the scaffold to display sequences for hybridization of fluorophores conjugated to DNA, we can create optical nano-barcodes. By using structures made out of DNA, the patterns of the optical barcodes will be readable both by imaging and by sequencing, thus enabling the creation of a mapping between cell locations in an organ and the mRNA expression of those cells.
We will use the method to perform spatially resolved transcriptomics in small organs: the mouse hair follicle, and small intestine crypt, and also perform the procedure for multiple samples collected at different time points. This will enable a high-dimensional data analysis that most likely will expose previously unknown dependencies that would provide completely new knowledge about how these biological systems work. By studying these systems, we will uncover much more information on how stem cells contribute to regeneration, the issue of de-differentiation that is a common theme in these organs and the effect this might have on the origin of cancer.
Max ERC Funding
1 923 263 €
Duration
Start date: 2017-08-01, End date: 2022-07-31
Project acronym CONPOL
Project Contexts, networks and participation: The social logic of political engagement
Researcher (PI) Sven Aron Oskarsson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH2, ERC-2015-CoG
Summary The statement that individuals’ immediate social circumstances influence how they think and act in the political sphere is a truism. However, both theoretical and empirical considerations have often prevented political scientists from incorporating this logic into analyses of political behavior. In the CONPOL project we argue that it is necessary to return to the idea that politics follows a social logic in order to push the theoretical and empirical boundaries in explaining political behavior. That is, people do not act as isolated individuals when confronting complex political tasks such as deciding whether to vote and which party or candidate to vote for. Instead politics should be seen as a social experience in which individuals arrive at their decisions within particular social settings: the family, the peer group, the workplace, the neighborhood. In what way do parents and other family members influence an individual’s political choices? What is the role of workmates and neighbors when individuals arrive at political decisions? Do friends and friends’ friends affect how you think and act in the political sphere? To answer such questions the standard approach to gather empirical evidence on political behavior based on national sample surveys needs to be complemented by the use of population wide register data. The empirical core of the CONPOL project is unique Swedish register data. Via the population registers provided by Statistics Sweden it is possible to identify several relevant social settings such as parent-child relations and the location of individuals within workplaces and neighborhoods. The registers also allow us to identify certain network links between individuals. Furthermore, Statistics Sweden holds information on several variables measuring important political traits. A major aim for CONPOL is to complement this information by scanning in and digitalizing election rolls with individual-level information on turnout across several elections.
Summary
The statement that individuals’ immediate social circumstances influence how they think and act in the political sphere is a truism. However, both theoretical and empirical considerations have often prevented political scientists from incorporating this logic into analyses of political behavior. In the CONPOL project we argue that it is necessary to return to the idea that politics follows a social logic in order to push the theoretical and empirical boundaries in explaining political behavior. That is, people do not act as isolated individuals when confronting complex political tasks such as deciding whether to vote and which party or candidate to vote for. Instead politics should be seen as a social experience in which individuals arrive at their decisions within particular social settings: the family, the peer group, the workplace, the neighborhood. In what way do parents and other family members influence an individual’s political choices? What is the role of workmates and neighbors when individuals arrive at political decisions? Do friends and friends’ friends affect how you think and act in the political sphere? To answer such questions the standard approach to gather empirical evidence on political behavior based on national sample surveys needs to be complemented by the use of population wide register data. The empirical core of the CONPOL project is unique Swedish register data. Via the population registers provided by Statistics Sweden it is possible to identify several relevant social settings such as parent-child relations and the location of individuals within workplaces and neighborhoods. The registers also allow us to identify certain network links between individuals. Furthermore, Statistics Sweden holds information on several variables measuring important political traits. A major aim for CONPOL is to complement this information by scanning in and digitalizing election rolls with individual-level information on turnout across several elections.
Max ERC Funding
1 621 940 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym DELMIT
Project Maintaining the Human Mitochondrial Genome
Researcher (PI) Maria Falkenberg Gustafsson
Host Institution (HI) GOETEBORGS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS1, ERC-2015-CoG
Summary Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
The long-term goal (or vision) of research in my laboratory is to understand in molecular detail how mtDNA is replicated and how this process is regulated in mammalian cells. To this end we use a protein biochemistry approach, which we combine with in vivo verification in cell lines. My group was in 2004 the first to reconstitute mtDNA replication in vitro and we have continued to develop even more elaborate system ever since. In the current application, the major focus is studies of the mitochondrial D-loop region, a triple-stranded structure in the mitochondrial genome. The D-loop functions as a regulatory hub and we will determine how initiation and termination of mtDNA replication is controlled from this region. We will also determine the physical organization of the mtDNA replication machinery at the replication fork and establish how mtDNA deletions, a classical hallmark of human ageing, are formed.
Summary
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
The long-term goal (or vision) of research in my laboratory is to understand in molecular detail how mtDNA is replicated and how this process is regulated in mammalian cells. To this end we use a protein biochemistry approach, which we combine with in vivo verification in cell lines. My group was in 2004 the first to reconstitute mtDNA replication in vitro and we have continued to develop even more elaborate system ever since. In the current application, the major focus is studies of the mitochondrial D-loop region, a triple-stranded structure in the mitochondrial genome. The D-loop functions as a regulatory hub and we will determine how initiation and termination of mtDNA replication is controlled from this region. We will also determine the physical organization of the mtDNA replication machinery at the replication fork and establish how mtDNA deletions, a classical hallmark of human ageing, are formed.
Max ERC Funding
1 999 985 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym DISLIFE
Project Liveable disabilities: Life courses and opportunity structures across time
Researcher (PI) Lotta Marie Christine Vikstroem
Host Institution (HI) UMEA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary In Europe today disabled people comprise some 65 million (10%). Yet they are marginalized in society and research, and little is known on how disabilities become liveable. This project challenges this bias by proposing to investigate ‘liveable disabilities’ as a function of disability and opportunity structures across time. It analyses four life course dimensions: disabled people’s (1) health and well-being; (2) involvement in education and work; (3) in a partner relationship and family; and (4) in leisure structures. Through this I identify liveable disabilities before, during and after the Swedish welfare state. The results are of significant cross-national interest as they form a useful baseline for what constitutes liveable disabilities, which helps governing bodies maximize opportunity structures for disabled people to participate fully in society.
This proposal is unique in employing mixed-methods life course research across time. First, it involves quantitative analysis of Sweden’s long-term digitized population databases, which reflect how disability impacts on people’s educational, occupational, marital and survival chances. The statistical outcome is novel in demonstrating how different impairments intersect with human characteristics relative to society’s structures of the past 200 years. Second, qualitative analyses uncover how disabled people today experience and talk about the above dimensions (1-4) themselves, and how mass media depict them. Third, I make innovative studies of leisure structures, which may promote liveable disabilities.
The proposal aims to establish me at the forefront of disability research. It benefits from my scholarship in history and demography and from three excellent centres at Umeå University I am connected to, funded by the Swedish Research Council. One centre researches populations, another gender. The third provides expertise in disability studies and ready access to stakeholders outside academia.
Summary
In Europe today disabled people comprise some 65 million (10%). Yet they are marginalized in society and research, and little is known on how disabilities become liveable. This project challenges this bias by proposing to investigate ‘liveable disabilities’ as a function of disability and opportunity structures across time. It analyses four life course dimensions: disabled people’s (1) health and well-being; (2) involvement in education and work; (3) in a partner relationship and family; and (4) in leisure structures. Through this I identify liveable disabilities before, during and after the Swedish welfare state. The results are of significant cross-national interest as they form a useful baseline for what constitutes liveable disabilities, which helps governing bodies maximize opportunity structures for disabled people to participate fully in society.
This proposal is unique in employing mixed-methods life course research across time. First, it involves quantitative analysis of Sweden’s long-term digitized population databases, which reflect how disability impacts on people’s educational, occupational, marital and survival chances. The statistical outcome is novel in demonstrating how different impairments intersect with human characteristics relative to society’s structures of the past 200 years. Second, qualitative analyses uncover how disabled people today experience and talk about the above dimensions (1-4) themselves, and how mass media depict them. Third, I make innovative studies of leisure structures, which may promote liveable disabilities.
The proposal aims to establish me at the forefront of disability research. It benefits from my scholarship in history and demography and from three excellent centres at Umeå University I am connected to, funded by the Swedish Research Council. One centre researches populations, another gender. The third provides expertise in disability studies and ready access to stakeholders outside academia.
Max ERC Funding
1 999 870 €
Duration
Start date: 2016-02-01, End date: 2021-07-31
Project acronym DrivenByPollinators
Project Driven by mutualists: how declines in pollinators impact plant communities and ecosystemfunctioning
Researcher (PI) Yann Mats CLOUGH
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS8, ERC-2018-COG
Summary Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Summary
Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Max ERC Funding
1 998 842 €
Duration
Start date: 2019-09-01, End date: 2024-08-31