Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AEDMOS
Project Attosecond Electron Dynamics in MOlecular Systems
Researcher (PI) Reinhard Kienberger
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Advanced insight into ever smaller structures of matter and their ever faster dynamics hold promise for pushing the frontiers of many fields in science and technology. Time-domain investigations of ultrafast microscopic processes are most successfully carried out by pump/probe experiments. Intense waveform-controlled few-cycle near-infrared laser pulses combined with isolated sub-femtosecond XUV (extreme UV) pulses have made possible direct access to electron motion on the atomic scale. These tools along with the techniques of laser-field-controlled XUV photoemission (“attosecond streaking”) and ultrafast UV-pump/XUV-probe spectroscopy have permitted real-time observation of electronic motion in experiments performed on atoms in the gas phase and of electronic transport processes in solids.
The purpose of this project is to to get insight into intra- and inter-molecular electron dynamics by extending attosecond spectroscopy to these processes. AEDMOS will allow control and real-time observation of a wide range of hyperfast fundamental processes directly on their natural, i.e. attosecond (1 as = EXP-18 s) time scale in molecules and molecular structures. In previous work we have successfully developed attosecond tools and techniques. By combining them with our experience in UHV technology and target preparation in a new beamline to be created in the framework of this project, we aim at investigating charge migration and transport in supramolecular assemblies, ultrafast electron dynamics in photocatalysis and dynamics of electron correlation in high-TC superconductors. These dynamics – of electronic excitation, exciton formation, relaxation, electron correlation and wave packet motion – are of broad scientific interest reaching from biomedicine to chemistry and physics and are pertinent to the development of many modern technologies including molecular electronics, optoelectronics, photovoltaics, light-to-chemical energy conversion and lossless energy transfer.
Summary
Advanced insight into ever smaller structures of matter and their ever faster dynamics hold promise for pushing the frontiers of many fields in science and technology. Time-domain investigations of ultrafast microscopic processes are most successfully carried out by pump/probe experiments. Intense waveform-controlled few-cycle near-infrared laser pulses combined with isolated sub-femtosecond XUV (extreme UV) pulses have made possible direct access to electron motion on the atomic scale. These tools along with the techniques of laser-field-controlled XUV photoemission (“attosecond streaking”) and ultrafast UV-pump/XUV-probe spectroscopy have permitted real-time observation of electronic motion in experiments performed on atoms in the gas phase and of electronic transport processes in solids.
The purpose of this project is to to get insight into intra- and inter-molecular electron dynamics by extending attosecond spectroscopy to these processes. AEDMOS will allow control and real-time observation of a wide range of hyperfast fundamental processes directly on their natural, i.e. attosecond (1 as = EXP-18 s) time scale in molecules and molecular structures. In previous work we have successfully developed attosecond tools and techniques. By combining them with our experience in UHV technology and target preparation in a new beamline to be created in the framework of this project, we aim at investigating charge migration and transport in supramolecular assemblies, ultrafast electron dynamics in photocatalysis and dynamics of electron correlation in high-TC superconductors. These dynamics – of electronic excitation, exciton formation, relaxation, electron correlation and wave packet motion – are of broad scientific interest reaching from biomedicine to chemistry and physics and are pertinent to the development of many modern technologies including molecular electronics, optoelectronics, photovoltaics, light-to-chemical energy conversion and lossless energy transfer.
Max ERC Funding
1 999 375 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AMPLITUDES
Project Novel structures in scattering amplitudes
Researcher (PI) Johannes Martin HENN
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Summary
This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ASSIMILES
Project Advanced Spectroscopy and Spectrometry for Imaging Metabolism using Isotopically-Labeled Endogenous Substrates
Researcher (PI) Arnaud Comment
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary A technological revolution is currently taking place making it possible to noninvasively study metabolism in mammals (incl. humans) in vivo with unprecedented temporal and spatial resolution. Central to these developments is the phenomenon of hyperpolarization, which transiently enhances the magnetic resonance (MR) signals so much that real-time metabolic imaging and spectroscopy becomes possible. The first clinical translation of hyperpolarization MR technology has recently been demonstrated with prostate cancer patients.
I have played an active role in these exciting developments, through design and construction of hyperpolarization MR setups that are defining the cutting-edge for in vivo preclinical metabolic studies. However, important obstacles still exist for the technology to fulfill its enormous potential.
With this highly interdisciplinary proposal, I will overcome the principal drawbacks of current hyperpolarization technology, namely: 1) A limited time window for hyperpolarized MR detection; 2) The conventional use of potentially toxic polarizing agents; 3) The necessity to use supra-physiological doses of metabolic substrates to reach detectable MR signal
I will develop a novel hyperpolarization instrument making use of photoexcited compounds as polarizing agents to produce hyperpolarized solutions containing exclusively endogenous compounds. It will become possible to deliver hyperpolarized solutions in a quasi-continuous manner, permitting infusion of physiological doses and greatly increasing sensitivity. I will also use a complementary isotope imaging technique, the so-called CryoNanoSIMS (developed at my institution over the last year), which can image isotopic distributions in frozen tissue sections and reveal the localization of injected substrates and their metabolites with subcellular spatial resolution. Case studies will include liver and brain cancer mouse models. This work is pioneering and will create a new frontier in molecular imaging.
Summary
A technological revolution is currently taking place making it possible to noninvasively study metabolism in mammals (incl. humans) in vivo with unprecedented temporal and spatial resolution. Central to these developments is the phenomenon of hyperpolarization, which transiently enhances the magnetic resonance (MR) signals so much that real-time metabolic imaging and spectroscopy becomes possible. The first clinical translation of hyperpolarization MR technology has recently been demonstrated with prostate cancer patients.
I have played an active role in these exciting developments, through design and construction of hyperpolarization MR setups that are defining the cutting-edge for in vivo preclinical metabolic studies. However, important obstacles still exist for the technology to fulfill its enormous potential.
With this highly interdisciplinary proposal, I will overcome the principal drawbacks of current hyperpolarization technology, namely: 1) A limited time window for hyperpolarized MR detection; 2) The conventional use of potentially toxic polarizing agents; 3) The necessity to use supra-physiological doses of metabolic substrates to reach detectable MR signal
I will develop a novel hyperpolarization instrument making use of photoexcited compounds as polarizing agents to produce hyperpolarized solutions containing exclusively endogenous compounds. It will become possible to deliver hyperpolarized solutions in a quasi-continuous manner, permitting infusion of physiological doses and greatly increasing sensitivity. I will also use a complementary isotope imaging technique, the so-called CryoNanoSIMS (developed at my institution over the last year), which can image isotopic distributions in frozen tissue sections and reveal the localization of injected substrates and their metabolites with subcellular spatial resolution. Case studies will include liver and brain cancer mouse models. This work is pioneering and will create a new frontier in molecular imaging.
Max ERC Funding
2 199 146 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ASTRUm
Project Astrophysics with Stored Highy Charged Radionuclides
Researcher (PI) Yury Litvinov
Host Institution (HI) GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMBH
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary The main goal of ASTRUm is to employ stored and cooled radioactive ions for forefront nuclear astrophysics research. Four key experiments are proposed to be conducted at GSI in Darmstadt, which holds the only facility to date capable of storing highly charged radionuclides in the required element and energy range. The proposed experiments can hardly be conducted by any other technique or method.
The weak decay matrix element for the transition between the 2.3 keV state in 205Pb and the ground state of 205Tl will be measured via the bound state beta decay measurement of fully ionized 205Tl81+. This will provide the required data to determine the solar pp-neutrino flux integrated over the last 5 million years and will allow us to unveil the astrophysical conditions prior to the formation of the solar system.
The measurements of the alpha-decay width of the 4.033 MeV excited state in 19Ne will allow us to constrain the conditions for the ignition of the rp-process in X-ray bursters.
ASTRUm will open a new field by enabling for the first time measurements of proton- and alpha-capture reaction cross-sections on radioactive nuclei of interest for the p-process of nucleosynthesis.
Last but not least, broad band mass and half-life measurements in a ring is the only technique to precisely determine these key nuclear properties for nuclei with half-lives as short as a millisecond and production rates of below one ion per day.
To accomplish these measurements with highest efficiency, sensitivity and precision, improved detector systems will be developed within ASTRUm. Possible applications of these systems go beyond ASTRUm objectives and will be used in particular in accelerator physics.
The instrumentation and experience gained within ASTRUm will be indispensable for planning the future, next generation storage ring projects, which are launched or proposed at several radioactive ion beam facilities.
Summary
The main goal of ASTRUm is to employ stored and cooled radioactive ions for forefront nuclear astrophysics research. Four key experiments are proposed to be conducted at GSI in Darmstadt, which holds the only facility to date capable of storing highly charged radionuclides in the required element and energy range. The proposed experiments can hardly be conducted by any other technique or method.
The weak decay matrix element for the transition between the 2.3 keV state in 205Pb and the ground state of 205Tl will be measured via the bound state beta decay measurement of fully ionized 205Tl81+. This will provide the required data to determine the solar pp-neutrino flux integrated over the last 5 million years and will allow us to unveil the astrophysical conditions prior to the formation of the solar system.
The measurements of the alpha-decay width of the 4.033 MeV excited state in 19Ne will allow us to constrain the conditions for the ignition of the rp-process in X-ray bursters.
ASTRUm will open a new field by enabling for the first time measurements of proton- and alpha-capture reaction cross-sections on radioactive nuclei of interest for the p-process of nucleosynthesis.
Last but not least, broad band mass and half-life measurements in a ring is the only technique to precisely determine these key nuclear properties for nuclei with half-lives as short as a millisecond and production rates of below one ion per day.
To accomplish these measurements with highest efficiency, sensitivity and precision, improved detector systems will be developed within ASTRUm. Possible applications of these systems go beyond ASTRUm objectives and will be used in particular in accelerator physics.
The instrumentation and experience gained within ASTRUm will be indispensable for planning the future, next generation storage ring projects, which are launched or proposed at several radioactive ion beam facilities.
Max ERC Funding
1 874 750 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym AutoClean
Project Cell-free reconstitution of autophagy to dissect molecular mechanisms
Researcher (PI) Claudine Simone Kraft
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Consolidator Grant (CoG), LS1, ERC-2017-COG
Summary Autophagy, a lysosomal degradation pathway in which the cell digests its own components, is an essential biological pathway that promotes organismal health and longevity and helps combat cancer and neurodegenerative diseases. Accordingly, the 2016 Nobel Prize in Physiology or Medicine was awarded for research in autophagy. Although autophagy has been extensively studied from yeast to mammals, the molecular events that underlie its induction and progression remain elusive. A highly conserved protein kinase, Atg1, plays a unique and essential role in initiating autophagy, yet despite this pivotal importance it has taken over twenty years for its first downstream target to be discovered. However, whilst our identification of the autophagy related membrane protein Atg9 as the first Atg1 substrate is an important advance, the molecular mechanisms that enable the extensive remodelling of cellular membranes that occurs during autophagy is still completely undefined. A detailed knowledge of the inputs and outputs of the Atg1 kinase will enable us to provide a definitive mechanistic understanding of autophagy. We have devised a novel permeabilized cell assay that reconstitutes the pathway in vitro, allowing us to recapitulate key steps in the autophagic process and thereby determine how the individual steps that lead up to autophagy are controlled. We will use this system to dissect the functional role of Atg1 kinase in autophagosome-vacuole fusion (Objective 1), and to determine the origin of the autophagic membrane and the role of Atg1 in expanding these (Objective 2). To reveal how Atg1/ULK1 kinase is activated in mammalian cells, we will apply the unique and carefully tailored synthetic in vivo approaches that we have recently developed (Objective 3). By focusing on the activation of the Atg1 kinase and the molecular events that it executes, we will be able to explain its central role in regulating the autophagic process and define the mechanistic steps in the pathway.
Summary
Autophagy, a lysosomal degradation pathway in which the cell digests its own components, is an essential biological pathway that promotes organismal health and longevity and helps combat cancer and neurodegenerative diseases. Accordingly, the 2016 Nobel Prize in Physiology or Medicine was awarded for research in autophagy. Although autophagy has been extensively studied from yeast to mammals, the molecular events that underlie its induction and progression remain elusive. A highly conserved protein kinase, Atg1, plays a unique and essential role in initiating autophagy, yet despite this pivotal importance it has taken over twenty years for its first downstream target to be discovered. However, whilst our identification of the autophagy related membrane protein Atg9 as the first Atg1 substrate is an important advance, the molecular mechanisms that enable the extensive remodelling of cellular membranes that occurs during autophagy is still completely undefined. A detailed knowledge of the inputs and outputs of the Atg1 kinase will enable us to provide a definitive mechanistic understanding of autophagy. We have devised a novel permeabilized cell assay that reconstitutes the pathway in vitro, allowing us to recapitulate key steps in the autophagic process and thereby determine how the individual steps that lead up to autophagy are controlled. We will use this system to dissect the functional role of Atg1 kinase in autophagosome-vacuole fusion (Objective 1), and to determine the origin of the autophagic membrane and the role of Atg1 in expanding these (Objective 2). To reveal how Atg1/ULK1 kinase is activated in mammalian cells, we will apply the unique and carefully tailored synthetic in vivo approaches that we have recently developed (Objective 3). By focusing on the activation of the Atg1 kinase and the molecular events that it executes, we will be able to explain its central role in regulating the autophagic process and define the mechanistic steps in the pathway.
Max ERC Funding
1 955 666 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BACTERIAL SYRINGES
Project Protein Translocation Through Bacterial Syringes
Researcher (PI) Stefan Raunser
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), LS1, ERC-2013-CoG
Summary "The main objective of this application is to study the molecular basis of cellular infection by bacterial ABC-type toxins (Tc). Tc complexes are important virulence factors of a range of bacteria, including Photorhabdus luminescens and Yersinia pseudotuberculosis that infect insects and humans. Belonging to the class of pore-forming toxins, tripartite Tc complexes perforate the host membrane by forming channels that translocate toxic enzymes into the host.
In our previous cryo-EM work on the P. luminescens Tc complex we discovered that Tcs use a special syringe-like device for cell entry. Building on these results, we now intend to unravel the molecular mechanism through which this unusual and complicated injection system allows membrane permeation and protein translocation. We will use a hybrid approach, including biochemical reconstitution, structural analysis by cryo-EM and X-ray crystallography, fluorescence-based assays and site-directed mutagenesis to provide a comprehensive description of the molecular mechanism of infection at an unprecedented level of molecular detail.
Our results will be paradigmatic for understanding the mechanism of action of ABC-type toxins and will shed new light on the interactions of bacterial pathogens with their hosts."
Summary
"The main objective of this application is to study the molecular basis of cellular infection by bacterial ABC-type toxins (Tc). Tc complexes are important virulence factors of a range of bacteria, including Photorhabdus luminescens and Yersinia pseudotuberculosis that infect insects and humans. Belonging to the class of pore-forming toxins, tripartite Tc complexes perforate the host membrane by forming channels that translocate toxic enzymes into the host.
In our previous cryo-EM work on the P. luminescens Tc complex we discovered that Tcs use a special syringe-like device for cell entry. Building on these results, we now intend to unravel the molecular mechanism through which this unusual and complicated injection system allows membrane permeation and protein translocation. We will use a hybrid approach, including biochemical reconstitution, structural analysis by cryo-EM and X-ray crystallography, fluorescence-based assays and site-directed mutagenesis to provide a comprehensive description of the molecular mechanism of infection at an unprecedented level of molecular detail.
Our results will be paradigmatic for understanding the mechanism of action of ABC-type toxins and will shed new light on the interactions of bacterial pathogens with their hosts."
Max ERC Funding
1 999 992 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym BiocatSusChem
Project Biocatalysis for Sustainable Chemistry – Understanding Oxidation/Reduction of Small Molecules by Redox Metalloenzymes via a Suite of Steady State and Transient Infrared Electrochemical Methods
Researcher (PI) Kylie VINCENT
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.
Summary
Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.
Max ERC Funding
1 997 286 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BioDisOrder
Project Order and Disorder at the Surface of Biological Membranes.
Researcher (PI) Alfonso DE SIMONE
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Summary
Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Max ERC Funding
1 999 945 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym BlackHoleMaps
Project Mapping gravitational waves from collisions of black holes
Researcher (PI) Mark Douglas Hannam
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Summary
Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Max ERC Funding
1 998 009 €
Duration
Start date: 2015-10-01, End date: 2020-09-30