Project acronym CONENE
Project Control of Large-scale Stochastic Hybrid Systems for Stability of Power Grid with Renewable Energy
Researcher (PI) Maryam Kamgarpour
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary The increasing uptake of renewable energy sources and liberalization of electricity markets are significantly changing power system operations. To ensure stability of the grid, it is critical to develop provably safe feedback control algorithms that take into account uncertainties in the output of weather-based renewable generation and in participation of distributed producers and consumers in electricity markets. The focus of this proposal is to develop the theory and algorithms for control of large-scale stochastic hybrid systems in order to guarantee safe and efficient grid operations. Stochastic hybrid systems are a powerful modeling framework. They capture uncertainties in the output of weather-based renewable generation as well as complex hybrid state interactions arising from discrete-valued network topologies with continuous-valued voltages and frequencies. The problems of stability and efficiency of the grid in the face of its changes will be formulated as safety and optimal control problems for stochastic hybrid systems. Using recent advances in numerical optimization and statistics, provably safe and scalable numerical algorithms for control of this class of systems will be developed. These algorithms will be implemented and validated on realistic power grid simulation platforms and will take advantage of recent advances in sensing, control and communication technologies for the grid. The end outcome of the project is better quantifying and controlling effects of increased uncertainties on the stability of the grid. The societal and economic implications of this study are tied with the value and price of a secure power grid. Addressing the questions formulated in this proposal will bring the EU closer to its ambitious renewable energy goals.
Summary
The increasing uptake of renewable energy sources and liberalization of electricity markets are significantly changing power system operations. To ensure stability of the grid, it is critical to develop provably safe feedback control algorithms that take into account uncertainties in the output of weather-based renewable generation and in participation of distributed producers and consumers in electricity markets. The focus of this proposal is to develop the theory and algorithms for control of large-scale stochastic hybrid systems in order to guarantee safe and efficient grid operations. Stochastic hybrid systems are a powerful modeling framework. They capture uncertainties in the output of weather-based renewable generation as well as complex hybrid state interactions arising from discrete-valued network topologies with continuous-valued voltages and frequencies. The problems of stability and efficiency of the grid in the face of its changes will be formulated as safety and optimal control problems for stochastic hybrid systems. Using recent advances in numerical optimization and statistics, provably safe and scalable numerical algorithms for control of this class of systems will be developed. These algorithms will be implemented and validated on realistic power grid simulation platforms and will take advantage of recent advances in sensing, control and communication technologies for the grid. The end outcome of the project is better quantifying and controlling effects of increased uncertainties on the stability of the grid. The societal and economic implications of this study are tied with the value and price of a secure power grid. Addressing the questions formulated in this proposal will bring the EU closer to its ambitious renewable energy goals.
Max ERC Funding
1 346 438 €
Duration
Start date: 2016-04-01, End date: 2020-09-30
Project acronym CONQUEST
Project Controlled quantum effects and spin technology
- from non-equilibrium physics to functional magnetics
Researcher (PI) Henrik Ronnow
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary The technology of the 20th century was dominated by a single material class: The semiconductors, whose properties can be tuned between those of metals and insulators all of which describable by single-electron effects. In contrast, quantum magnets and strongly correlated electron systems offer a full palette of quantum mechanical many-electron states. CONQUEST aim to discover, understand and demonstrate control over such quantum states. A new experimental approach, building on established powerful laboratory and neutron scattering techniques combined with dynamical control-perturbations, will be developed to study correlated quantum effects in magnetic materials. The immediate goal is to open a new field of non-equilibrium and time dependent studies in solid state physics. The long-term vision is that the approach might nurture the materials of the 21st century.
Summary
The technology of the 20th century was dominated by a single material class: The semiconductors, whose properties can be tuned between those of metals and insulators all of which describable by single-electron effects. In contrast, quantum magnets and strongly correlated electron systems offer a full palette of quantum mechanical many-electron states. CONQUEST aim to discover, understand and demonstrate control over such quantum states. A new experimental approach, building on established powerful laboratory and neutron scattering techniques combined with dynamical control-perturbations, will be developed to study correlated quantum effects in magnetic materials. The immediate goal is to open a new field of non-equilibrium and time dependent studies in solid state physics. The long-term vision is that the approach might nurture the materials of the 21st century.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym CONSTAMIS
Project Connecting Statistical Mechanics and Conformal Field Theory: an Ising Model Perspective
Researcher (PI) CLEMENT HONGLER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The developments of Statistical Mechanics and Quantum Field Theory are among the major achievements of the 20th century's science. During the second half of the century, these two subjects started to converge. In two dimensions, this resulted in a most remarkable chapter of mathematical physics: Conformal Field Theory (CFT) reveals deep structures allowing for extremely precise investigations, making such theories powerful building blocks of many subjects of mathematics and physics. Unfortunately, this convergence has remained non-rigorous, leaving most of the spectacular field-theoretic applications to Statistical Mechanics conjectural.
About 15 years ago, several mathematical breakthroughs shed new light on this picture. The development of SLE curves and discrete complex analysis has enabled one to connect various statistical mechanics models with conformally symmetric processes. Recently, major progress was made on a key statistical mechanics model, the Ising model: the connection with SLE was established, and many formulae predicted by CFT were proven.
Important advances towards connecting Statistical Mechanics and CFT now appear possible. This is the goal of this proposal, which is organized in three objectives:
(I) Build a deep correspondence between the Ising model and CFT: reveal clear links between the objects and structures arising in the Ising and CFT frameworks.
(II) Gather the insights of (I) to study new connections to CFT, particularly for minimal models, current algebras and parafermions.
(III) Combine (I) and (II) to go beyond conformal symmetry: link the Ising model with massive integrable field theories.
The aim is to build one of the first rigorous bridges between Statistical Mechanics and CFT. It will help to close the gap between physical derivations and mathematical theorems. By linking the deep structures of CFT to concrete models that are applicable in many subjects, it will be potentially useful to theoretical and applied scientists.
Summary
The developments of Statistical Mechanics and Quantum Field Theory are among the major achievements of the 20th century's science. During the second half of the century, these two subjects started to converge. In two dimensions, this resulted in a most remarkable chapter of mathematical physics: Conformal Field Theory (CFT) reveals deep structures allowing for extremely precise investigations, making such theories powerful building blocks of many subjects of mathematics and physics. Unfortunately, this convergence has remained non-rigorous, leaving most of the spectacular field-theoretic applications to Statistical Mechanics conjectural.
About 15 years ago, several mathematical breakthroughs shed new light on this picture. The development of SLE curves and discrete complex analysis has enabled one to connect various statistical mechanics models with conformally symmetric processes. Recently, major progress was made on a key statistical mechanics model, the Ising model: the connection with SLE was established, and many formulae predicted by CFT were proven.
Important advances towards connecting Statistical Mechanics and CFT now appear possible. This is the goal of this proposal, which is organized in three objectives:
(I) Build a deep correspondence between the Ising model and CFT: reveal clear links between the objects and structures arising in the Ising and CFT frameworks.
(II) Gather the insights of (I) to study new connections to CFT, particularly for minimal models, current algebras and parafermions.
(III) Combine (I) and (II) to go beyond conformal symmetry: link the Ising model with massive integrable field theories.
The aim is to build one of the first rigorous bridges between Statistical Mechanics and CFT. It will help to close the gap between physical derivations and mathematical theorems. By linking the deep structures of CFT to concrete models that are applicable in many subjects, it will be potentially useful to theoretical and applied scientists.
Max ERC Funding
998 005 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym CONTROL
Project Behavioral Foundations of Power and Control
Researcher (PI) Holger HERZ
Host Institution (HI) UNIVERSITE DE FRIBOURG
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Power relations are an integral part of economic organizations, as well as political and social institutions. People exercise power over others – or are exposed to the power of others – in government, in firms, and even in families. People care deeply about power and autonomy, and attitudes towards them have important economic and societal consequences. Examples include such diverse matters as the willingness to delegate power to government, empire building in public organizations, or sorting into more or less autonomous jobs. Despite their importance, we have remarkably little knowledge about preferences for power and autonomy. Clearly, power and autonomy are valued for being instrumental in achieving desirable outcomes, but it has also long been argued that they are valuable for their own sake. Existing value measures of power and autonomy, however, fail to distinguish between intrinsic and instrumental value components. Power distance and autonomy are even considered to be cultural values, but we don’t know whether differences in such measures are rooted in differences in the instrumental value or differences in preferences. We propose a novel revealed preference approach that allows us to address this shortcoming by separately measuring the intrinsic value of power and the intrinsic value of autonomy. We can then apply this method to properly assess heterogeneity in such values within and across cultures. By combining our measures with other data, we will be able to study the importance of such preferences in explaining individual differences, such as occupational choices or expressed political views, as well as economic outcomes across countries, such as the level of decentralization in economic organizations. Finally, we will study how behavioral reactions to power interact with such preferences and organizational structure, in order to better understand how institutions can be efficiently designed when behavioral reactions to power are accounted for.
Summary
Power relations are an integral part of economic organizations, as well as political and social institutions. People exercise power over others – or are exposed to the power of others – in government, in firms, and even in families. People care deeply about power and autonomy, and attitudes towards them have important economic and societal consequences. Examples include such diverse matters as the willingness to delegate power to government, empire building in public organizations, or sorting into more or less autonomous jobs. Despite their importance, we have remarkably little knowledge about preferences for power and autonomy. Clearly, power and autonomy are valued for being instrumental in achieving desirable outcomes, but it has also long been argued that they are valuable for their own sake. Existing value measures of power and autonomy, however, fail to distinguish between intrinsic and instrumental value components. Power distance and autonomy are even considered to be cultural values, but we don’t know whether differences in such measures are rooted in differences in the instrumental value or differences in preferences. We propose a novel revealed preference approach that allows us to address this shortcoming by separately measuring the intrinsic value of power and the intrinsic value of autonomy. We can then apply this method to properly assess heterogeneity in such values within and across cultures. By combining our measures with other data, we will be able to study the importance of such preferences in explaining individual differences, such as occupational choices or expressed political views, as well as economic outcomes across countries, such as the level of decentralization in economic organizations. Finally, we will study how behavioral reactions to power interact with such preferences and organizational structure, in order to better understand how institutions can be efficiently designed when behavioral reactions to power are accounted for.
Max ERC Funding
1 492 785 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym COSYM
Project Computational Symmetry for Geometric Data Analysis and Design
Researcher (PI) Mark Pauly
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE6, ERC-2010-StG_20091028
Summary The analysis and synthesis of complex 3D geometric data sets is of crucial importance in many scientific disciplines (e.g. bio-medicine, material science, mechanical engineering, physics) and industrial applications (e.g. drug design, entertainment, architecture). We are currently witnessing a tremendous increase in the size and complexity of geometric data, largely fueled by significant advances in 3D acquisition and digital production technology. However, existing computational tools are often not suited to handle this complexity.
The goal of this project is to explore a fundamentally different way of processing 3D geometry. We will investigate a new generalized model of geometric symmetry as a unifying concept for studying spatial organization in geometric data. This model allows exposing the inherent redundancies in digital 3D data and will enable truly scalable algorithms for analysis, processing, and design of large-scale geometric data sets. The proposed research will address a number of fundamental questions: What is the information content of 3D geometric models? How can we represent, store, and transmit geometric data most efficiently? Can we we use symmetry to repair deficiencies and reduce noise in acquired data? What is the role of symmetry in the design process and how can it be used to reduce complexity?
I will investigate these questions with an integrated approach that combines thorough theoretical studies with practical solutions for real-world applications.
The proposed research has a strong interdisciplinary component and will consider the same fundamental questions from different perspectives, closely interacting with scientists of various disciplines, as well artists, architects, and designers.
Summary
The analysis and synthesis of complex 3D geometric data sets is of crucial importance in many scientific disciplines (e.g. bio-medicine, material science, mechanical engineering, physics) and industrial applications (e.g. drug design, entertainment, architecture). We are currently witnessing a tremendous increase in the size and complexity of geometric data, largely fueled by significant advances in 3D acquisition and digital production technology. However, existing computational tools are often not suited to handle this complexity.
The goal of this project is to explore a fundamentally different way of processing 3D geometry. We will investigate a new generalized model of geometric symmetry as a unifying concept for studying spatial organization in geometric data. This model allows exposing the inherent redundancies in digital 3D data and will enable truly scalable algorithms for analysis, processing, and design of large-scale geometric data sets. The proposed research will address a number of fundamental questions: What is the information content of 3D geometric models? How can we represent, store, and transmit geometric data most efficiently? Can we we use symmetry to repair deficiencies and reduce noise in acquired data? What is the role of symmetry in the design process and how can it be used to reduce complexity?
I will investigate these questions with an integrated approach that combines thorough theoretical studies with practical solutions for real-world applications.
The proposed research has a strong interdisciplinary component and will consider the same fundamental questions from different perspectives, closely interacting with scientists of various disciplines, as well artists, architects, and designers.
Max ERC Funding
1 160 302 €
Duration
Start date: 2011-02-01, End date: 2016-01-31
Project acronym CSEM
Project The Collaborative Seismic Earth Model Project
Researcher (PI) Andreas FICHTNER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary Seismic tomography images of the Earth's interior are key to the characterisation of earthquakes, natural resource exploration, seismic risk assessment, tsunami warning, and studies of geodynamic processes. While tomography has drawn a fascinating picture of our planet, today's individual researchers can exploit only a fraction of the rapidly expanding seismic data volume. Applications relying on tomographic images lag behind their potential; fundamental questions remain unanswered: Do mantle plumes exist in the deep Earth? What are the properties of active faults, and how do they affect earthquake ground motion?
To address these questions and to ensure continued progress of seismic tomography in the 'Big Data' era, I propose new technological developments that enable a paradigm shift in Earth model construction towards a Collaborative Seismic Earth Model (CSEM). Fully accounting for the physics of wave propagation in the complex 3D Earth, the CSEM is envisioned to evolve successively through a systematic group effort of my team, thus going beyond the tomographic models that individual researchers may construct today.
I will develop the technological foundation of the CSEM and integrate these developments in studies of large-earthquake rupture processes and the convective pattern of the Earth's mantle in relation to surface geology. The CSEM project will bridge the gap between regional and global tomography, and deliver the first multiscale model of the Earth where crust and mantle are jointly resolved. The CSEM will lead to a dramatic increase in the exploitable seismic data volume, and set new standards for the construction and reproducibility of tomographic Earth models.
Beyond this project, the CSEM will be openly accessible through the European Plate Observing System (EPOS). It will then offer Earth scientists the unique opportunity to join forces in the discovery of multiscale Earth structure by systematically building on each other's results.
Summary
Seismic tomography images of the Earth's interior are key to the characterisation of earthquakes, natural resource exploration, seismic risk assessment, tsunami warning, and studies of geodynamic processes. While tomography has drawn a fascinating picture of our planet, today's individual researchers can exploit only a fraction of the rapidly expanding seismic data volume. Applications relying on tomographic images lag behind their potential; fundamental questions remain unanswered: Do mantle plumes exist in the deep Earth? What are the properties of active faults, and how do they affect earthquake ground motion?
To address these questions and to ensure continued progress of seismic tomography in the 'Big Data' era, I propose new technological developments that enable a paradigm shift in Earth model construction towards a Collaborative Seismic Earth Model (CSEM). Fully accounting for the physics of wave propagation in the complex 3D Earth, the CSEM is envisioned to evolve successively through a systematic group effort of my team, thus going beyond the tomographic models that individual researchers may construct today.
I will develop the technological foundation of the CSEM and integrate these developments in studies of large-earthquake rupture processes and the convective pattern of the Earth's mantle in relation to surface geology. The CSEM project will bridge the gap between regional and global tomography, and deliver the first multiscale model of the Earth where crust and mantle are jointly resolved. The CSEM will lead to a dramatic increase in the exploitable seismic data volume, and set new standards for the construction and reproducibility of tomographic Earth models.
Beyond this project, the CSEM will be openly accessible through the European Plate Observing System (EPOS). It will then offer Earth scientists the unique opportunity to join forces in the discovery of multiscale Earth structure by systematically building on each other's results.
Max ERC Funding
1 367 500 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CTLANDROS
Project Reactive Oxygen Species in CTL-mediated Cell Death: from Mechanism to Applications
Researcher (PI) Denis Martinvalet
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS6, ERC-2010-StG_20091118
Summary Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells release granzyme and perforin from cytotoxic granules into the immune synapse to induce apoptosis of target cells that are either virus-infected or cancerous. Granzyme A activates a caspase-independent apoptotic pathway and induces mitochondrial damage characterized by superoxide anion production and loss of the mitochondrial transmembrane potential, without disrupting the integrity of the mitochondrial outer membrane; while causing single-stranded DNA damage. GzmB induces both caspase-dependent and caspase-independent cell death. In the caspase-dependent pathway, mitochondrial functions are altered as evidenced by the loss of mitochondrial transmembrane potential and the generation of reactive oxygen species (ROS). The mitochondrial outer membrane (MOM) is disrupted, resulting in the release of apoptogenic factors. To date, research on mitochondrial-dependent apoptosis has focused on mitochondrial outer membrane permeabilization (MOMP) however whether the generation of ROS is incidental or essential to the execution of apoptosis remains unclear. Like human GzmA, human GzmB promotes cell death in a ROS-dependent manner. Preliminary data suggest that human GzmB can induce ROS in a MOMP-independent manner as Bax and Bak double knockout MEF cells treated with human GzmB and perforin still display a robust ROS production and dye in an ROS-dependent manner. Since GzmA and GzmB induce cell death in a ROS-dependent manner, we hypothesize that oxygen free radicals are central to the execution of programmed cell death induced by the cytotoxic granules. Therefore, the goal of this proposal is to dissect the key molecular events triggered by ROS that lead to Citotoxic Tcell-induced target cell death. A combination of biochemical, genetic and proteomic approaches in association with Electron Spin Resonance (ESR) spectroscopy methodology will be used to unravel the essential role ROS play in CTL-mediated killing.
Summary
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells release granzyme and perforin from cytotoxic granules into the immune synapse to induce apoptosis of target cells that are either virus-infected or cancerous. Granzyme A activates a caspase-independent apoptotic pathway and induces mitochondrial damage characterized by superoxide anion production and loss of the mitochondrial transmembrane potential, without disrupting the integrity of the mitochondrial outer membrane; while causing single-stranded DNA damage. GzmB induces both caspase-dependent and caspase-independent cell death. In the caspase-dependent pathway, mitochondrial functions are altered as evidenced by the loss of mitochondrial transmembrane potential and the generation of reactive oxygen species (ROS). The mitochondrial outer membrane (MOM) is disrupted, resulting in the release of apoptogenic factors. To date, research on mitochondrial-dependent apoptosis has focused on mitochondrial outer membrane permeabilization (MOMP) however whether the generation of ROS is incidental or essential to the execution of apoptosis remains unclear. Like human GzmA, human GzmB promotes cell death in a ROS-dependent manner. Preliminary data suggest that human GzmB can induce ROS in a MOMP-independent manner as Bax and Bak double knockout MEF cells treated with human GzmB and perforin still display a robust ROS production and dye in an ROS-dependent manner. Since GzmA and GzmB induce cell death in a ROS-dependent manner, we hypothesize that oxygen free radicals are central to the execution of programmed cell death induced by the cytotoxic granules. Therefore, the goal of this proposal is to dissect the key molecular events triggered by ROS that lead to Citotoxic Tcell-induced target cell death. A combination of biochemical, genetic and proteomic approaches in association with Electron Spin Resonance (ESR) spectroscopy methodology will be used to unravel the essential role ROS play in CTL-mediated killing.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym DAPP
Project Data-centric Parallel Programming
Researcher (PI) Torsten Hoefler
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE6, ERC-2015-STG
Summary We address a fundamental and increasingly important challenge in computer science: how to program large-scale heterogeneous parallel computers. Society relies on these computers to satisfy the growing demands of important applications such as drug design, weather prediction, and big data analytics. Architectural trends make heterogeneous parallel processors the fundamental building blocks of computing platforms ranging from quad-core laptops to million-core supercomputers; failing to exploit these architectures efficiently will severely limit the technological advance of our society. Computationally demanding problems are often inherently parallel and can readily be compiled for various target architectures. Yet, efficiently mapping data to the target memory system is notoriously hard, and the cost of fetching two operands from remote memory is already orders of magnitude more expensive than any arithmetic operation. Data access cost is growing with the amount of parallelism which makes data layout optimizations crucial. Prevalent parallel programming abstractions largely ignore data access and guide programmers to design threads of execution that are scheduled to the machine. We depart from this control-centric model to a data-centric program formulation where we express programs as collections of values, called memlets, that are mapped as first-class objects by the compiler and runtime system. Our holistic compiler and runtime system aims to substantially advance the state of the art in parallel computing by combining static and dynamic scheduling of memlets to complex heterogeneous target architectures. We will demonstrate our methods on three challenging real-world applications in scientific computing, data analytics, and graph processing. We strongly believe that, without holistic data-centric programming, the growing complexity and inefficiency of parallel programming will create a scaling wall that will limit our future computational capabilities.
Summary
We address a fundamental and increasingly important challenge in computer science: how to program large-scale heterogeneous parallel computers. Society relies on these computers to satisfy the growing demands of important applications such as drug design, weather prediction, and big data analytics. Architectural trends make heterogeneous parallel processors the fundamental building blocks of computing platforms ranging from quad-core laptops to million-core supercomputers; failing to exploit these architectures efficiently will severely limit the technological advance of our society. Computationally demanding problems are often inherently parallel and can readily be compiled for various target architectures. Yet, efficiently mapping data to the target memory system is notoriously hard, and the cost of fetching two operands from remote memory is already orders of magnitude more expensive than any arithmetic operation. Data access cost is growing with the amount of parallelism which makes data layout optimizations crucial. Prevalent parallel programming abstractions largely ignore data access and guide programmers to design threads of execution that are scheduled to the machine. We depart from this control-centric model to a data-centric program formulation where we express programs as collections of values, called memlets, that are mapped as first-class objects by the compiler and runtime system. Our holistic compiler and runtime system aims to substantially advance the state of the art in parallel computing by combining static and dynamic scheduling of memlets to complex heterogeneous target architectures. We will demonstrate our methods on three challenging real-world applications in scientific computing, data analytics, and graph processing. We strongly believe that, without holistic data-centric programming, the growing complexity and inefficiency of parallel programming will create a scaling wall that will limit our future computational capabilities.
Max ERC Funding
1 499 672 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym DECCA
Project Devices, engines and circuits: quantum engineering with cold atoms
Researcher (PI) Jean-Philippe BRANTUT
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Summary
Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Max ERC Funding
1 454 258 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym DECCAPAC
Project Design and Exploitation of C-C and C-H Activation Pathways in Asymmetric Catalysis
Researcher (PI) Nicolai Cramer
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Synthesizing organic molecules in high purity with designed properties is of utmost importance for pharmaceutical applications and material- and polymer sciences including the efficient production of enantiopure compounds and the compliance with ecological concerns and sustainability. The efficiency of all reaction classes has improved over the past decades. However, the basic principle and execution did not change: The target molecule is disconnected into donor and acceptor synthons and appropriate functional groups need to be introduced and adjusted to carry out the envisioned coupling. These additional steps decrease the yield and efficiency, are costly in time, resources and produce waste. The introduction of new functionalities by direct C-H or C-C bond activation is a unique and highly appealing strategy. The range of substrates is virtually unlimited, including hydrocarbons, small molecules and polymers. Such dream reactions avoid any pre-functionalization, shorten synthetic routes, make unsought disconnections possible and allow for a more efficient usage of our dwindling resources. Despite recent progress in the activations of inert bonds, narrow scopes, poor reactivities and harsh conditions hamper most general practical applications. Especially, enantioselective activations are a longstanding challenge. The outlined project seeks to address these issues by the development and exploitation of new catalytic enantioselective C-H and C-C functionalizations of broadly available organic substrates, using chiral Rh- and Pd- catalysts, additionally supported by automated screening and computational techniques. These reactions will be then applied in the streamlined synthesis of pharmaceutically relevant scaffolds and of compounds for organic electronics.
Summary
Synthesizing organic molecules in high purity with designed properties is of utmost importance for pharmaceutical applications and material- and polymer sciences including the efficient production of enantiopure compounds and the compliance with ecological concerns and sustainability. The efficiency of all reaction classes has improved over the past decades. However, the basic principle and execution did not change: The target molecule is disconnected into donor and acceptor synthons and appropriate functional groups need to be introduced and adjusted to carry out the envisioned coupling. These additional steps decrease the yield and efficiency, are costly in time, resources and produce waste. The introduction of new functionalities by direct C-H or C-C bond activation is a unique and highly appealing strategy. The range of substrates is virtually unlimited, including hydrocarbons, small molecules and polymers. Such dream reactions avoid any pre-functionalization, shorten synthetic routes, make unsought disconnections possible and allow for a more efficient usage of our dwindling resources. Despite recent progress in the activations of inert bonds, narrow scopes, poor reactivities and harsh conditions hamper most general practical applications. Especially, enantioselective activations are a longstanding challenge. The outlined project seeks to address these issues by the development and exploitation of new catalytic enantioselective C-H and C-C functionalizations of broadly available organic substrates, using chiral Rh- and Pd- catalysts, additionally supported by automated screening and computational techniques. These reactions will be then applied in the streamlined synthesis of pharmaceutically relevant scaffolds and of compounds for organic electronics.
Max ERC Funding
1 499 500 €
Duration
Start date: 2011-02-01, End date: 2016-01-31