Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym Antibodyomics
Project Vaccine profiling and immunodiagnostic discovery by high-throughput antibody repertoire analysis
Researcher (PI) Sai Tota Reddy
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Summary
Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Max ERC Funding
1 492 586 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AXPLAST
Project Deep brain imaging of cellular mechanisms of sensory processing and learning
Researcher (PI) Jan GRUNDEMANN
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Summary
Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Max ERC Funding
1 475 475 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym AxScale
Project Axions and relatives across different mass scales
Researcher (PI) Babette DÖBRICH
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Pseudoscalar QCD axions and axion-like Particles (ALPs) are an excellent candidate for Dark Matter or can act as a mediator particle for Dark Matter. Since the discovery of the Higgs boson, we know that fundamental scalars exist and it is timely to explore the Axion/ALP parameter space more intensively. A look at the allowed axion/ALP parameter space makes it clear that these might exist at low mass (below few eV), as (part of) Dark Matter. Alternatively they might exist at higher mass, above roughly the MeV scale, potentially as a Dark Matter mediator particle. AxScale explores parts of these different mass regions, with complementary techniques but with one research team.
Firstly, with RADES, it develops a novel concept for a filter-like cavity for the search of QCD axion Dark matter at a few tens of a micro-eV. Dark Matter Axions can be discovered by their resonant conversion in that cavity embedded in a strong magnetic field. The `classical axion window' has recently received much interest from cosmological model-building and I will implement a novel cavity concept that will allow to explore this Dark Matter parameter region.
Secondly, AxScale searches for axions and ALPs using the NA62 detector at CERN's SPS. Especially the mass region above a few MeV can be efficiently searched by the use of a proton fixed-target facility. During nominal data taking NA62 investigates a Kaon beam. NA62 can also run in a mode in which its primary proton beam is fully dumped. With the resulting high interaction rate, the existence of weakly coupled particles can be efficiently probed. Thus, searches for ALPs from Kaon decays as well as from production in dumped protons with NA62 are foreseen in AxScale. More generally, NA62 can look for a plethora of `Dark Sector' particles with recorded and future data. With the AxScale program I aim at maximizing the reach of NA62 for these new physics models.
Summary
Pseudoscalar QCD axions and axion-like Particles (ALPs) are an excellent candidate for Dark Matter or can act as a mediator particle for Dark Matter. Since the discovery of the Higgs boson, we know that fundamental scalars exist and it is timely to explore the Axion/ALP parameter space more intensively. A look at the allowed axion/ALP parameter space makes it clear that these might exist at low mass (below few eV), as (part of) Dark Matter. Alternatively they might exist at higher mass, above roughly the MeV scale, potentially as a Dark Matter mediator particle. AxScale explores parts of these different mass regions, with complementary techniques but with one research team.
Firstly, with RADES, it develops a novel concept for a filter-like cavity for the search of QCD axion Dark matter at a few tens of a micro-eV. Dark Matter Axions can be discovered by their resonant conversion in that cavity embedded in a strong magnetic field. The `classical axion window' has recently received much interest from cosmological model-building and I will implement a novel cavity concept that will allow to explore this Dark Matter parameter region.
Secondly, AxScale searches for axions and ALPs using the NA62 detector at CERN's SPS. Especially the mass region above a few MeV can be efficiently searched by the use of a proton fixed-target facility. During nominal data taking NA62 investigates a Kaon beam. NA62 can also run in a mode in which its primary proton beam is fully dumped. With the resulting high interaction rate, the existence of weakly coupled particles can be efficiently probed. Thus, searches for ALPs from Kaon decays as well as from production in dumped protons with NA62 are foreseen in AxScale. More generally, NA62 can look for a plethora of `Dark Sector' particles with recorded and future data. With the AxScale program I aim at maximizing the reach of NA62 for these new physics models.
Max ERC Funding
1 134 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BATMAN
Project Development of Quantitative Metrologies to Guide Lithium Ion Battery Manufacturing
Researcher (PI) Vanessa Wood
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Lithium ion batteries offer tremendous potential as an enabling technology for sustainable transportation and development. However, their widespread usage as the energy storage solution for electric mobility and grid-level integration of renewables is impeded by the fact that current state-of-the-art lithium ion batteries have energy densities that are too small, charge- and discharge rates that are too low, and costs that are too high. Highly publicized instances of catastrophic failure of lithium ion batteries raise questions of safety. Understanding the limitations to battery performance and origins of the degradation and failure is highly complex due to the difficulties in studying interrelated processes that take place at different length and time scales in a corrosive environment. In the project, we will (1) develop and implement quantitative methods to study the complex interrelations between structure and electrochemistry occurring at the nano-, micron-, and milli-scales in lithium ion battery active materials and electrodes, (2) conduct systematic experimental studies with our new techniques to understand the origins of performance limitations and to develop design guidelines for achieving high performance and safe batteries, and (3) investigate economically viable engineering solutions based on these guidelines to achieve high performance and safe lithium ion batteries.
Summary
Lithium ion batteries offer tremendous potential as an enabling technology for sustainable transportation and development. However, their widespread usage as the energy storage solution for electric mobility and grid-level integration of renewables is impeded by the fact that current state-of-the-art lithium ion batteries have energy densities that are too small, charge- and discharge rates that are too low, and costs that are too high. Highly publicized instances of catastrophic failure of lithium ion batteries raise questions of safety. Understanding the limitations to battery performance and origins of the degradation and failure is highly complex due to the difficulties in studying interrelated processes that take place at different length and time scales in a corrosive environment. In the project, we will (1) develop and implement quantitative methods to study the complex interrelations between structure and electrochemistry occurring at the nano-, micron-, and milli-scales in lithium ion battery active materials and electrodes, (2) conduct systematic experimental studies with our new techniques to understand the origins of performance limitations and to develop design guidelines for achieving high performance and safe batteries, and (3) investigate economically viable engineering solutions based on these guidelines to achieve high performance and safe lithium ion batteries.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BEFINE
Project mechanical BEhavior of Fluid-INduced Earthquakes
Researcher (PI) Marie, Estelle, Solange VIOLAY
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary Fluids play an important role in fault zone and in earthquakes generation. Fluid pressure reduces the normal effective stress, lowering the frictional strength of the fault, potentially triggering earthquake ruptures. Fluid injection induced earthquakes (FIE) are direct evidence of the effect of fluid pressure on the fault strength. In addition, natural earthquake sequences are often associated with high fluid pressures at seismogenic depths. Although simple in theory, the mechanisms that govern the nucleation, propagation and recurrence of FIEs are poorly constrained, and our ability to assess the seismic hazard that is associated with natural and induced events remains limited. This project aims to enhance our knowledge of FIE mechanisms over entire seismic cycles through multidisciplinary approaches, including the following:
- Set-up and installation of a new and unique rock friction apparatus that is dedicated to the study of FIEs.
- Low strain rate friction experiments (coupled with electrical conductivity measurements) to investigate the influence of fluids on fault creep and earthquake recurrence.
- Intermediate strain rate friction experiments to investigate the effect of fluids on fault stability during earthquake nucleation.
- High strain rate friction experiments to investigate the effect of fluids on fault weakening during earthquake propagation.
- Post-mortem experimental fault analyses with state-of-art microstructural techniques.
- The theoretical friction law will be calibrated with friction experiments and faulted rock microstructural observations.
These steps will produce fundamental discoveries regarding natural earthquakes and tectonic processes and help scientists understand and eventually manage the occurrence of induced seismicity, an increasingly hot topic in geo-engineering. The sustainable exploitation of geo-resources is a key research and technology challenge at the European scale, with a substantial economical and societal impact.
Summary
Fluids play an important role in fault zone and in earthquakes generation. Fluid pressure reduces the normal effective stress, lowering the frictional strength of the fault, potentially triggering earthquake ruptures. Fluid injection induced earthquakes (FIE) are direct evidence of the effect of fluid pressure on the fault strength. In addition, natural earthquake sequences are often associated with high fluid pressures at seismogenic depths. Although simple in theory, the mechanisms that govern the nucleation, propagation and recurrence of FIEs are poorly constrained, and our ability to assess the seismic hazard that is associated with natural and induced events remains limited. This project aims to enhance our knowledge of FIE mechanisms over entire seismic cycles through multidisciplinary approaches, including the following:
- Set-up and installation of a new and unique rock friction apparatus that is dedicated to the study of FIEs.
- Low strain rate friction experiments (coupled with electrical conductivity measurements) to investigate the influence of fluids on fault creep and earthquake recurrence.
- Intermediate strain rate friction experiments to investigate the effect of fluids on fault stability during earthquake nucleation.
- High strain rate friction experiments to investigate the effect of fluids on fault weakening during earthquake propagation.
- Post-mortem experimental fault analyses with state-of-art microstructural techniques.
- The theoretical friction law will be calibrated with friction experiments and faulted rock microstructural observations.
These steps will produce fundamental discoveries regarding natural earthquakes and tectonic processes and help scientists understand and eventually manage the occurrence of induced seismicity, an increasingly hot topic in geo-engineering. The sustainable exploitation of geo-resources is a key research and technology challenge at the European scale, with a substantial economical and societal impact.
Max ERC Funding
1 982 925 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym BETLIV
Project Returning to a Better Place: The (Re)assessment of the ‘Good Life’ in Times of Crisis
Researcher (PI) Valerio SIMONI RIBA
Host Institution (HI) FONDATION POUR L INSTITUT DE HAUTES ETUDES INTERNATIONALES ET DU DEVELOPPEMENT
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary What makes for a valuable and good life is a question that many people in the contemporary world ask themselves, yet it is one that social science research has seldom addressed. Only recently have scholars started undertaking inductive comparative research on different notions of the ‘good life’, highlighting socio-cultural variations and calling for a better understanding of the different imaginaries, aspirations and values that guide people in their quest for better living conditions. Research is still lacking, however, on how people themselves evaluate, compare, and put into perspective different visions of good living and their socio-cultural anchorage. This project addresses such questions from an anthropological perspective, proposing an innovative study of how ideals of the good life are articulated, (re)assessed, and related to specific places and contexts as a result of the experience of crisis and migration. The case studies chosen to operationalize these lines of enquiry focus on the phenomenon of return migration, and consist in an analysis of the imaginaries and experience of return by Ecuadorian and Cuban men and women who migrated to Spain, are dissatisfied with their life there, and envisage/carry out the project of going back to their countries of origin (Ecuador and Cuba respectively). The project’s ambition is to bring together and contribute to three main scholarly areas of enquiry: 1) the study of morality, ethics and what counts as ‘good life’, 2) the study of the field of economic practice, its definition, value regimes, and ‘crises’, and 3) the study of migratory aspirations, projects, and trajectories. A multi-sited endeavour, the research is designed in three subprojects carried out in Spain (PhD student), Ecuador (Post-Doc), and Cuba (PI), in which ethnographic methods will be used to provide the first empirically grounded study of the links between notions and experiences of crisis, return migration, and the (re)assessment of good living.
Summary
What makes for a valuable and good life is a question that many people in the contemporary world ask themselves, yet it is one that social science research has seldom addressed. Only recently have scholars started undertaking inductive comparative research on different notions of the ‘good life’, highlighting socio-cultural variations and calling for a better understanding of the different imaginaries, aspirations and values that guide people in their quest for better living conditions. Research is still lacking, however, on how people themselves evaluate, compare, and put into perspective different visions of good living and their socio-cultural anchorage. This project addresses such questions from an anthropological perspective, proposing an innovative study of how ideals of the good life are articulated, (re)assessed, and related to specific places and contexts as a result of the experience of crisis and migration. The case studies chosen to operationalize these lines of enquiry focus on the phenomenon of return migration, and consist in an analysis of the imaginaries and experience of return by Ecuadorian and Cuban men and women who migrated to Spain, are dissatisfied with their life there, and envisage/carry out the project of going back to their countries of origin (Ecuador and Cuba respectively). The project’s ambition is to bring together and contribute to three main scholarly areas of enquiry: 1) the study of morality, ethics and what counts as ‘good life’, 2) the study of the field of economic practice, its definition, value regimes, and ‘crises’, and 3) the study of migratory aspirations, projects, and trajectories. A multi-sited endeavour, the research is designed in three subprojects carried out in Spain (PhD student), Ecuador (Post-Doc), and Cuba (PI), in which ethnographic methods will be used to provide the first empirically grounded study of the links between notions and experiences of crisis, return migration, and the (re)assessment of good living.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31