Project acronym ANALYTIC
Project ANALYTIC PROPERTIES OF INFINITE GROUPS:
limits, curvature, and randomness
Researcher (PI) Gulnara Arzhantseva
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Summary
The overall goal of this project is to develop new concepts and techniques in geometric and asymptotic group theory for a systematic study of the analytic properties of discrete groups. These are properties depending on the unitary representation theory of the group. The fundamental examples are amenability, discovered by von Neumann in 1929, and property (T), introduced by Kazhdan in 1967.
My main objective is to establish the precise relations between groups recently appeared in K-theory and topology such as C*-exact groups and groups coarsely embeddable into a Hilbert space, versus those discovered in ergodic theory and operator algebra, for example, sofic and hyperlinear groups. This is a first ever attempt to confront the analytic behavior of so different nature. I plan to work on crucial open questions: Is every coarsely embeddable group C*-exact? Is every group sofic? Is every hyperlinear group sofic?
My motivation is two-fold:
- Many outstanding conjectures were recently solved for these groups, e.g. the Novikov conjecture (1965) for coarsely embeddable groups by Yu in 2000 and the Gottschalk surjunctivity conjecture (1973) for sofic groups by Gromov in 1999. However, their group-theoretical structure remains mysterious.
- In recent years, geometric group theory has undergone significant changes, mainly due to the growing impact of this theory on other branches of mathematics. However, the interplay between geometric, asymptotic, and analytic group properties has not yet been fully understood.
The main innovative contribution of this proposal lies in the interaction between 3 axes: (i) limits of groups, in the space of marked groups or metric ultralimits; (ii) analytic properties of groups with curvature, of lacunary or relatively hyperbolic groups; (iii) random groups, in a topological or statistical meaning. As a result, I will describe the above apparently unrelated classes of groups in a unified way and will detail their algebraic behavior.
Max ERC Funding
1 065 500 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym BIOMIM
Project Biomimetic films and membranes as advanced materials for studies on cellular processes
Researcher (PI) Catherine Cecile Picart
Host Institution (HI) INSTITUT POLYTECHNIQUE DE GRENOBLE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Summary
The main objective nowadays in the field of biomaterials is to design highly performing bioinspired materials learning from natural processes. Importantly, biochemical and physical cues are key parameters that can affect cellular processes. Controlling processes that occur at the cell/material interface is also of prime importance to guide the cell response. The main aim of the current project is to develop novel functional bio-nanomaterials for in vitro biological studies. Our strategy is based on two related projects.
The first project deals with the rational design of smart films with foreseen applications in musculoskeletal tissue engineering. We will gain knowledge of key cellular processes by designing well defined self-assembled thin coatings. These multi-functional surfaces with bioactivity (incorporation of growth factors), mechanical (film stiffness) and topographical properties (spatial control of the film s properties) will serve as tools to mimic the complexity of the natural materials in vivo and to present bioactive molecules in the solid phase. We will get a better fundamental understanding of how cellular functions, including adhesion and differentiation of muscle cells are affected by the materials s surface properties.
In the second project, we will investigate at the molecular level a crucial aspect of cell adhesion and motility, which is the intracellular linkage between the plasma membrane and the cell cytoskeleton. We aim to elucidate the role of ERM proteins, especially ezrin and moesin, in the direct linkage between the plasma membrane and actin filaments. Here again, we will use a well defined microenvironment in vitro to simplify the complexity of the interactions that occur in cellulo. To this end, lipid membranes containing a key regulator lipid from the phosphoinositides familly, PIP2, will be employed in conjunction with purified proteins to investigate actin regulation by ERM proteins in the presence of PIP2-membranes.
Max ERC Funding
1 499 996 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym D-END
Project Telomeres: from the DNA end replication problem to the control of cell proliferation
Researcher (PI) Maria Teresa Teixeira Fernandes Bernardo
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary Linear chromosomes of eukaryotes end with telomeres that ensure their stability. Because of the inability of semi-conservative DNA replication machinery to fully replicate DNA ends, telomeres require dedicated mechanisms to be duplicated and their length is eroded at each cell division. For this reason, telomeres constitute molecular clocks that determine cell proliferation potential in eukaryotes. Strikingly, we have shown recently that it is the shortest telomere in the cell that determines the onset of replicative senescence. This project aims a complete and detailed dissection of the in vivo DNA-end replication problem and the deep understanding of its impact for cell division capability. Specifically my goals are (1) the determination of the exact structures that result from the replication of DNA extremities, (2) the examination of the activities operating at the shortest telomere that triggers replicative senescence and (3) the investigation of the correspondence between telomere molecular structure and cell proliferation state at individual cell scale. To achieve this, I will undertake in Saccharomyces cerevisiae original and innovative single-molecule and single-cell approaches, that, in combination with genome-wide screens and sophisticated cellular settings, will allow to track and challenge a specified telomere of defined length. I anticipate that this work will lead to an in-depth understanding of how telomeres are replicated and how they enable the control of cell proliferation in eukaryotic cells, a matter at the intersection of the fundamentals of molecular genetics, cell biology of aging and oncology.
Summary
Linear chromosomes of eukaryotes end with telomeres that ensure their stability. Because of the inability of semi-conservative DNA replication machinery to fully replicate DNA ends, telomeres require dedicated mechanisms to be duplicated and their length is eroded at each cell division. For this reason, telomeres constitute molecular clocks that determine cell proliferation potential in eukaryotes. Strikingly, we have shown recently that it is the shortest telomere in the cell that determines the onset of replicative senescence. This project aims a complete and detailed dissection of the in vivo DNA-end replication problem and the deep understanding of its impact for cell division capability. Specifically my goals are (1) the determination of the exact structures that result from the replication of DNA extremities, (2) the examination of the activities operating at the shortest telomere that triggers replicative senescence and (3) the investigation of the correspondence between telomere molecular structure and cell proliferation state at individual cell scale. To achieve this, I will undertake in Saccharomyces cerevisiae original and innovative single-molecule and single-cell approaches, that, in combination with genome-wide screens and sophisticated cellular settings, will allow to track and challenge a specified telomere of defined length. I anticipate that this work will lead to an in-depth understanding of how telomeres are replicated and how they enable the control of cell proliferation in eukaryotic cells, a matter at the intersection of the fundamentals of molecular genetics, cell biology of aging and oncology.
Max ERC Funding
1 498 504 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym DISPEQ
Project Qualitative study of nonlinear dispersive equations
Researcher (PI) Nikolay Tzvetkov
Host Institution (HI) UNIVERSITE DE CERGY-PONTOISE
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary We plan to further improve the understanding of the nonlinear dispersive wave propagation phenomena. In particular we plan to develop tools allowing to make a statistical description of the corresponding flows and methods to study transverse stability independently of the very particular arguments based on the inverse scattering. We also plan to study critical problems in strongly non Euclidean geometries.
Summary
We plan to further improve the understanding of the nonlinear dispersive wave propagation phenomena. In particular we plan to develop tools allowing to make a statistical description of the corresponding flows and methods to study transverse stability independently of the very particular arguments based on the inverse scattering. We also plan to study critical problems in strongly non Euclidean geometries.
Max ERC Funding
880 270 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym GENEPHYSCHEM
Project Spatio-temporal control of gene expression by physico-chemical means: from in vitro photocontrol to smart drug delivery
Researcher (PI) Damien Baigl
Host Institution (HI) UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary We propose to undertake a new challenge: the control of gene expression systems by physico-chemical means to achieve the following objectives: i) developing robust tools for spatio-temporal control of protein expression; ii) understanding the role of micro-environmental factors in gene regulation; and iii) constructing and implementing in vivo smart nanomachines able to express active molecules in response to a stimulus and deliver them to a targeted cell. First, various biochemical processes (transcription, translation) will be controlled by light in vitro, based on photo-induced conformational changes of nucleic acids (DNA, RNA) and chromatin. Based on conformational changes rather than specific template-protein interaction, and combined with microfluidic methodologies, this novel approach will provide a ubiquitous tool to address gene expression using light regardless of the sequence, with unique control and spatio-temporal resolution. Second, by reconstituting photo-responsive gene expression systems in well-defined giant liposomes, we will study the dynamics of gene expression in response to light stimulation. This will allow us to establish the respective roles of the membrane (surface charge, permeability) and of the inner micro-environment composition (viscosity, molecular crowding). Third, we will develop stable, long-circulating polymer nanocapsules (polymersomes) encapsulating a gene expression material that can be triggered by light and/or molecules of biological interest. In response to the signal, an exogenous, potentially immunogenic enzyme will be expressed inside the protecting nanocapsule to locally and catalytically convert a non toxic precursor present in the medium into a cytotoxic drug that will be delivered to a cell (e.g., a cancer cell). This new concept of triggerable gene-carrying nanomachines with unique amplification capacity of drug secretion shall open new horizons for the development of smart biological probes and future therapeutics.
Summary
We propose to undertake a new challenge: the control of gene expression systems by physico-chemical means to achieve the following objectives: i) developing robust tools for spatio-temporal control of protein expression; ii) understanding the role of micro-environmental factors in gene regulation; and iii) constructing and implementing in vivo smart nanomachines able to express active molecules in response to a stimulus and deliver them to a targeted cell. First, various biochemical processes (transcription, translation) will be controlled by light in vitro, based on photo-induced conformational changes of nucleic acids (DNA, RNA) and chromatin. Based on conformational changes rather than specific template-protein interaction, and combined with microfluidic methodologies, this novel approach will provide a ubiquitous tool to address gene expression using light regardless of the sequence, with unique control and spatio-temporal resolution. Second, by reconstituting photo-responsive gene expression systems in well-defined giant liposomes, we will study the dynamics of gene expression in response to light stimulation. This will allow us to establish the respective roles of the membrane (surface charge, permeability) and of the inner micro-environment composition (viscosity, molecular crowding). Third, we will develop stable, long-circulating polymer nanocapsules (polymersomes) encapsulating a gene expression material that can be triggered by light and/or molecules of biological interest. In response to the signal, an exogenous, potentially immunogenic enzyme will be expressed inside the protecting nanocapsule to locally and catalytically convert a non toxic precursor present in the medium into a cytotoxic drug that will be delivered to a cell (e.g., a cancer cell). This new concept of triggerable gene-carrying nanomachines with unique amplification capacity of drug secretion shall open new horizons for the development of smart biological probes and future therapeutics.
Max ERC Funding
1 450 320 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym HYRAX
Project Rock Hyrax Middens and Climate Change in Southern Africa during the last 50,000 years
Researcher (PI) Brian Mc Kee Chase
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary In stark contrast to the abundance of high quality palaeoenvironmental records obtained from the temperate regions of the northern hemisphere, terrestrial palaeoenvironmental information from southern Africa's drylands comes from discontinuous deposits with poor absolute age control and ambiguous palaeoclimatic significance. Confronted with the possibility of future environmental and social disruption as a result of climate change, the need for reliable records from southern Africa has never been so acute. This project seeks to develop rock hyrax middens as novel palaeoenvironmental archives to investigate long-term climate change. Hyrax middens (fossilised accumulations of urine and faecal pellets) contain a range of palaeoenvironmental proxies, including fossil pollen and stable isotopes. As part of a pilot study, I have created new collection and sampling methodologies, establishing the proof of principle and showing that middens provide continuous sub-annual to multi-decadal multi-proxy records of environmental change spanning the last 50,000 years. This work has been exceptional in terms of its ability to elucidate long-term climate dynamics at the local scale, and I now intend to apply my techniques to studying environmental change across the whole of southern Africa, a climatically sensitive, but poorly understood region of the globe. Developing new sites, proxies and analytical techniques, HYRAX will provide the first opportunity to study rapid climate change events, the extent and phasing of major climatic phenomena, and the direction and potential impacts of future climate change.
Summary
In stark contrast to the abundance of high quality palaeoenvironmental records obtained from the temperate regions of the northern hemisphere, terrestrial palaeoenvironmental information from southern Africa's drylands comes from discontinuous deposits with poor absolute age control and ambiguous palaeoclimatic significance. Confronted with the possibility of future environmental and social disruption as a result of climate change, the need for reliable records from southern Africa has never been so acute. This project seeks to develop rock hyrax middens as novel palaeoenvironmental archives to investigate long-term climate change. Hyrax middens (fossilised accumulations of urine and faecal pellets) contain a range of palaeoenvironmental proxies, including fossil pollen and stable isotopes. As part of a pilot study, I have created new collection and sampling methodologies, establishing the proof of principle and showing that middens provide continuous sub-annual to multi-decadal multi-proxy records of environmental change spanning the last 50,000 years. This work has been exceptional in terms of its ability to elucidate long-term climate dynamics at the local scale, and I now intend to apply my techniques to studying environmental change across the whole of southern Africa, a climatically sensitive, but poorly understood region of the globe. Developing new sites, proxies and analytical techniques, HYRAX will provide the first opportunity to study rapid climate change events, the extent and phasing of major climatic phenomena, and the direction and potential impacts of future climate change.
Max ERC Funding
1 484 046 €
Duration
Start date: 2010-11-01, End date: 2016-10-31
Project acronym MAD-ESEC
Project Magmas at Depth: an Experimental Study at Extreme Conditions
Researcher (PI) Chrystèle Sanloup
Host Institution (HI) UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Magmas, i.e. silicate melts, have played a key role in the chemical and thermal evolution of the Earth and other planets. The Earth's interior today is the outcome of mass transfers which occurred primarily in its early history and still occur now via magmatic events. Present day magmatic and volcanic processes are controlled by the properties of molten silicate at high pressure, considering that magmas are produced at depth. However, the physical properties of molten silicates remain largely unexplored across the broad range of relevant P-T conditions, and their chemical properties are very often assumed constant and equal to those known at ambient conditions. This blurs out our understanding of planetary differentiation and current magmatic processes.
The aim of this proposal is to place fundamental constraints on magma generation and transport in planetary interiors by measuring the properties of silicate melts in their natural high pressures (P) and high temperatures (T) conditions using a broad range of in situ key diagnostic probes (X-ray and neutron scattering techniques, X-ray absorption, radiography, Raman spectroscopy). The completion of this proposal will result in a comprehensive key database in the composition-P-T space that will form the foundation for modelling planetary formation and differentiation, and will provide answers to the very fundamental questions on magma formation, ascent or trapping at depth in the current and past Earth.
This experimental program is allowed by the recent advancements in in situ high P-T techniques, and comes in conjunction with a large and fruitful theoretical effort; time has thus come to understand Earth's melts and their keys to Earth's evolution.
Summary
Magmas, i.e. silicate melts, have played a key role in the chemical and thermal evolution of the Earth and other planets. The Earth's interior today is the outcome of mass transfers which occurred primarily in its early history and still occur now via magmatic events. Present day magmatic and volcanic processes are controlled by the properties of molten silicate at high pressure, considering that magmas are produced at depth. However, the physical properties of molten silicates remain largely unexplored across the broad range of relevant P-T conditions, and their chemical properties are very often assumed constant and equal to those known at ambient conditions. This blurs out our understanding of planetary differentiation and current magmatic processes.
The aim of this proposal is to place fundamental constraints on magma generation and transport in planetary interiors by measuring the properties of silicate melts in their natural high pressures (P) and high temperatures (T) conditions using a broad range of in situ key diagnostic probes (X-ray and neutron scattering techniques, X-ray absorption, radiography, Raman spectroscopy). The completion of this proposal will result in a comprehensive key database in the composition-P-T space that will form the foundation for modelling planetary formation and differentiation, and will provide answers to the very fundamental questions on magma formation, ascent or trapping at depth in the current and past Earth.
This experimental program is allowed by the recent advancements in in situ high P-T techniques, and comes in conjunction with a large and fruitful theoretical effort; time has thus come to understand Earth's melts and their keys to Earth's evolution.
Max ERC Funding
1 332 160 €
Duration
Start date: 2011-06-01, End date: 2017-05-31
Project acronym MATHANA
Project Mathematical modeling of anaesthetic action
Researcher (PI) Axel Hutt
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary General anaesthesia is an important method in today's hospital practice and especially in surgery. To supervise the depth of anaesthesia during surgery, the anaesthesist applies electroencephalography (EEG) and monitors the brain activity of the subject on the scalp. The applied monitoring machine calculates the change of the power spectrum of the brain signals to indicate the anaesthetic depth. This procedure is based on the finding that the concentration increase of the anaesthetic drug changes the EEG-power spectrum in a significant way. Although this procedure is applied world-wide, the underlying neural mechanism of the spectrum change is still unknown. The project aims to elucidate the underlying neural mechanism by a detailed investigating a mathematical model of neural populations.
The investigation is based on analytical calculations in a neural population model of the cortex involving intrinsic neural properties of brain areas and feedback loops to other areas, such as the loop between the cortex and the thalamus. Currently, there are two proposed mechanisms for the charactertisic change of the power spectrum: a highly nonlinear jump in the activation (so-called phase transition) and a linear behavior. The project mainly focusses on the nonlinear jump to finally rule it out or support it. A subsequent comparison to previous experimenta results aims to fit the physiological parameters. Since the cortex population is embedded into a network of other cortical areas and the thalamus, the corresponding analytical investigations takes into account external stochastic (from other brain areas) and time-periodic (thalamic) forces. To this end it is necessary to develop several novel nonlinear analysis technique of neural populations to derive the power spectrum close to the phase transition and conditions for physiological parameters.
Summary
General anaesthesia is an important method in today's hospital practice and especially in surgery. To supervise the depth of anaesthesia during surgery, the anaesthesist applies electroencephalography (EEG) and monitors the brain activity of the subject on the scalp. The applied monitoring machine calculates the change of the power spectrum of the brain signals to indicate the anaesthetic depth. This procedure is based on the finding that the concentration increase of the anaesthetic drug changes the EEG-power spectrum in a significant way. Although this procedure is applied world-wide, the underlying neural mechanism of the spectrum change is still unknown. The project aims to elucidate the underlying neural mechanism by a detailed investigating a mathematical model of neural populations.
The investigation is based on analytical calculations in a neural population model of the cortex involving intrinsic neural properties of brain areas and feedback loops to other areas, such as the loop between the cortex and the thalamus. Currently, there are two proposed mechanisms for the charactertisic change of the power spectrum: a highly nonlinear jump in the activation (so-called phase transition) and a linear behavior. The project mainly focusses on the nonlinear jump to finally rule it out or support it. A subsequent comparison to previous experimenta results aims to fit the physiological parameters. Since the cortex population is embedded into a network of other cortical areas and the thalamus, the corresponding analytical investigations takes into account external stochastic (from other brain areas) and time-periodic (thalamic) forces. To this end it is necessary to develop several novel nonlinear analysis technique of neural populations to derive the power spectrum close to the phase transition and conditions for physiological parameters.
Max ERC Funding
856 500 €
Duration
Start date: 2011-01-01, End date: 2015-10-31
Project acronym MERCURY ISOTOPES
Project Exploring the isotopic dimension of the global mercury cycle
Researcher (PI) Jeroen Sonke
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2010-StG_20091028
Summary Mass-independent fractionation (MIF) of isotopes in terrestrial geochemical processes was first observed in 1983 for oxygen and in 2000 for sulfur isotopes. Recently mercury (Hg) was added to this shortlist when isotopic anomalies were observed for Hg s two odd isotopes, 199Hg and 201Hg in biological tissues. The objective of the MERCURY ISOTOPES project is to take Hg MIF beyond the initial discovery, and use it to address major outstanding scientific questions of societal and philosophical interest. Similar to the profound insights that carbon and oxygen isotope systematics have brought to climate research, we propose to use variations in Hg isotopic compositions to fingerprint natural and anthropogenic sources, quantify isotope fractionation processes, and provide new constraints on models of mercury cycling.
The MERCURY ISOTOPES project centres on the use of mercury MIF to understand global Hg dynamics at different time scales, from the Pleistocene to modern times. Three main themes will be investigated: 1. the modern Hg cycle focusing on Asian urban-industrial emissions related to coal burning, 2. recent atmospheric Hg deposition in the Arctic, recent Arctic Ocean Hg records from archived biological tissues, and post-glacial Hg deposition from 10,000 yr old ombrotrophic peat records along a mid-latitude sub-Arctic gradient. 3 Continuous atmospheric Hg speciation and isotopic monitoring at the Pic du Midi Observatory (Pyrenees).
By tapping information from the isotopic dimension of Hg cycling, including revolutionary mass-independent effects, I expect a maximum scientific impact while supporting a socially relevant and urgently needed investigation at the frontier of isotope geosciences.
Summary
Mass-independent fractionation (MIF) of isotopes in terrestrial geochemical processes was first observed in 1983 for oxygen and in 2000 for sulfur isotopes. Recently mercury (Hg) was added to this shortlist when isotopic anomalies were observed for Hg s two odd isotopes, 199Hg and 201Hg in biological tissues. The objective of the MERCURY ISOTOPES project is to take Hg MIF beyond the initial discovery, and use it to address major outstanding scientific questions of societal and philosophical interest. Similar to the profound insights that carbon and oxygen isotope systematics have brought to climate research, we propose to use variations in Hg isotopic compositions to fingerprint natural and anthropogenic sources, quantify isotope fractionation processes, and provide new constraints on models of mercury cycling.
The MERCURY ISOTOPES project centres on the use of mercury MIF to understand global Hg dynamics at different time scales, from the Pleistocene to modern times. Three main themes will be investigated: 1. the modern Hg cycle focusing on Asian urban-industrial emissions related to coal burning, 2. recent atmospheric Hg deposition in the Arctic, recent Arctic Ocean Hg records from archived biological tissues, and post-glacial Hg deposition from 10,000 yr old ombrotrophic peat records along a mid-latitude sub-Arctic gradient. 3 Continuous atmospheric Hg speciation and isotopic monitoring at the Pic du Midi Observatory (Pyrenees).
By tapping information from the isotopic dimension of Hg cycling, including revolutionary mass-independent effects, I expect a maximum scientific impact while supporting a socially relevant and urgently needed investigation at the frontier of isotope geosciences.
Max ERC Funding
1 176 924 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym MNIQS
Project Mathematics and Numerics of Infinite Quantum Systems
Researcher (PI) Mathieu Lewin
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The purpose of the project is to study linear and nonlinear models arising in quantum mechanics and which are used to describe
matter at the microscopic and nanoscopic scales. The project focuses on physically-oriented questions (rigorous derivation of a
given model from first principles), analytic problems (existence and properties of bound states, study of solutions to timedependent
equations) and numerical issues (development of reliable algorithmic strategies). Most of the models are nonlinear and
describe physical systems possessing an infinite number of quantum particles, leading to specific difficulties.
The first part of the project is devoted to the study of relativistic atoms and molecules, while taking into account quantum
electrodynamics effects like the polarization of the vacuum. The models are all based on the Dirac operator.
The second part is focused on the study of quantum crystals. The goal is to develop new strategies for describing their behavior in
the presence of defects and local deformations. Both insulators, semiconductors and metals are considered (including graphene).
In the third part, attractive systems are considered (like stars or a few nucleons interacting via strong forces in a nucleus). The
project aims at rigorously understanding some of their specific properties, like Cooper pairing or the possible dynamical collapse of
massive gravitational objects.
Finally, the last part is devoted to general properties of infinite quantum systems, in particular the proof of the existence of the
thermodynamic limit
Summary
The purpose of the project is to study linear and nonlinear models arising in quantum mechanics and which are used to describe
matter at the microscopic and nanoscopic scales. The project focuses on physically-oriented questions (rigorous derivation of a
given model from first principles), analytic problems (existence and properties of bound states, study of solutions to timedependent
equations) and numerical issues (development of reliable algorithmic strategies). Most of the models are nonlinear and
describe physical systems possessing an infinite number of quantum particles, leading to specific difficulties.
The first part of the project is devoted to the study of relativistic atoms and molecules, while taking into account quantum
electrodynamics effects like the polarization of the vacuum. The models are all based on the Dirac operator.
The second part is focused on the study of quantum crystals. The goal is to develop new strategies for describing their behavior in
the presence of defects and local deformations. Both insulators, semiconductors and metals are considered (including graphene).
In the third part, attractive systems are considered (like stars or a few nucleons interacting via strong forces in a nucleus). The
project aims at rigorously understanding some of their specific properties, like Cooper pairing or the possible dynamical collapse of
massive gravitational objects.
Finally, the last part is devoted to general properties of infinite quantum systems, in particular the proof of the existence of the
thermodynamic limit
Max ERC Funding
905 700 €
Duration
Start date: 2010-10-01, End date: 2015-09-30