Project acronym AFRIVAL
Project African river basins: catchment-scale carbon fluxes and transformations
Researcher (PI) Steven Bouillon
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Summary
This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Max ERC Funding
1 745 262 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym COALA
Project Comprehensive molecular characterization of secondary organic aerosol formation in the atmosphere
Researcher (PI) Mikael Ehn
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Summary
Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Max ERC Funding
1 892 221 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym DRY-2-DRY
Project Do droughts self-propagate and self-intensify?
Researcher (PI) Diego González Miralles
Host Institution (HI) UNIVERSITEIT GENT
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary Droughts cause agricultural loss, forest mortality and drinking water scarcity. Their predicted increase in recurrence and intensity poses serious threats to future global food security. Several historically unprecedented droughts have already occurred over the last decade in Europe, Australia and the USA. The cost of the ongoing Californian drought is estimated to be about US$3 billion. Still today, the knowledge of how droughts start and evolve remains limited, and so does the understanding of how climate change may affect them.
Positive feedbacks from land have been suggested as critical for the occurrence of recent droughts: as rainfall deficits dry out soil and vegetation, the evaporation of land water is reduced, then the local air becomes too dry to yield rainfall, which further enhances drought conditions. Importantly, this is not just a 'local' feedback, as remote regions may rely on evaporated water transported by winds from the drought-affected region. Following this rationale, droughts self-propagate and self-intensify.
However, a global capacity to observe these processes is lacking. Furthermore, climate and forecast models are immature when it comes to representing the influences of land on rainfall. Do climate models underestimate this land feedback? If so, future drought aggravation will be greater than currently expected. At the moment, this remains largely speculative, given the limited number of studies of these processes.
I propose to use novel in situ and satellite records of soil moisture, evaporation and precipitation, in combination with new mechanistic models that can map water vapour trajectories and explore multi-dimensional feedbacks. DRY-2-DRY will not only advance our fundamental knowledge of the mechanisms triggering droughts, it will also provide independent evidence of the extent to which managing land cover can help 'dampen' drought events, and enable progress towards more accurate short-term and long-term drought forecasts.
Summary
Droughts cause agricultural loss, forest mortality and drinking water scarcity. Their predicted increase in recurrence and intensity poses serious threats to future global food security. Several historically unprecedented droughts have already occurred over the last decade in Europe, Australia and the USA. The cost of the ongoing Californian drought is estimated to be about US$3 billion. Still today, the knowledge of how droughts start and evolve remains limited, and so does the understanding of how climate change may affect them.
Positive feedbacks from land have been suggested as critical for the occurrence of recent droughts: as rainfall deficits dry out soil and vegetation, the evaporation of land water is reduced, then the local air becomes too dry to yield rainfall, which further enhances drought conditions. Importantly, this is not just a 'local' feedback, as remote regions may rely on evaporated water transported by winds from the drought-affected region. Following this rationale, droughts self-propagate and self-intensify.
However, a global capacity to observe these processes is lacking. Furthermore, climate and forecast models are immature when it comes to representing the influences of land on rainfall. Do climate models underestimate this land feedback? If so, future drought aggravation will be greater than currently expected. At the moment, this remains largely speculative, given the limited number of studies of these processes.
I propose to use novel in situ and satellite records of soil moisture, evaporation and precipitation, in combination with new mechanistic models that can map water vapour trajectories and explore multi-dimensional feedbacks. DRY-2-DRY will not only advance our fundamental knowledge of the mechanisms triggering droughts, it will also provide independent evidence of the extent to which managing land cover can help 'dampen' drought events, and enable progress towards more accurate short-term and long-term drought forecasts.
Max ERC Funding
1 465 000 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ELITE
Project Early Life Traces, Evolution, and Implications for Astrobiology
Researcher (PI) Emmanuelle J Javaux
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), PE10, ERC-2012-StG_20111012
Summary Tracking the early traces of life preserved in very old rocks and reconstructing the major steps of its evolution is an exciting and most challenging domain of research. How amazing it is to have a cell that is 1.5 or 3.2 billion years old under a microscope! From these and other disseminated fragments of life preserved along the geological timescale, one can build the puzzle of biosphere evolution and rising biological complexity. The possibility that life may exist beyond Earth on other habitable planets lies yet at another scale of scientific debates and popular dreams. We have the chance now to live at a time when technology enable us to study in the finest details the very old record of life, or to land on planets with microscope and analytical tools, mimicking a geologist exploring extraterrestrial rocky outcrops to find traces of water and perhaps life. There is still a lot to be done however, to solve major questions of life evolution on Earth, and to look for unambiguous life traces, on Earth or beyond. The project ELiTE aims to provide key answers to some of these fundamental questions.
Astrobiology studies the origin, evolution and distribution of life in the Universe, starting with life on Earth, the only biological planet known so far. The ambitious objectives of the project ELiTE are the following:
1) The identification of Early traces of life and their preservation conditions, in Precambrian rocks of established age
2) The characterization of their biological affinities, using innovative approaches comprising micro to nanoscale morphological, ultrastructural and chemical analyses of fossil and recent analog material
3) The determination of the timing of major steps in evolution. In particular, the project ELiTE aims to decipher two major and inter-related steps in early life evolution and the rise of biological complexity: the evolution of cyanobacteria, responsible for Earth oxygenation and ancestor of the chloroplast, influencing drastically the evolution of life and the planet Earth, and the evolution of the domain Eucarya since LECA (Last Eucaryotic Universal Ancestor).
4) The determination of causes of observed pattern of evolution in relation with the environmental context (oxygenation, impacts, glaciations, tectonics, nutrient availability in changing ocean chemistry) and biological innovations and interactions (ecosystems evolution).
Objective 1 has implications for the search for unambiguous traces of life on Earth and beyond Earth. Objectives 2 to 4 have implications for the understanding of causes and patterns of biological evolution and rise of complexity in Earth life. Providing answers to these most fundamental questions will have major impact on our understanding of early life evolution, with implications for the search for life beyond Earth.
Summary
Tracking the early traces of life preserved in very old rocks and reconstructing the major steps of its evolution is an exciting and most challenging domain of research. How amazing it is to have a cell that is 1.5 or 3.2 billion years old under a microscope! From these and other disseminated fragments of life preserved along the geological timescale, one can build the puzzle of biosphere evolution and rising biological complexity. The possibility that life may exist beyond Earth on other habitable planets lies yet at another scale of scientific debates and popular dreams. We have the chance now to live at a time when technology enable us to study in the finest details the very old record of life, or to land on planets with microscope and analytical tools, mimicking a geologist exploring extraterrestrial rocky outcrops to find traces of water and perhaps life. There is still a lot to be done however, to solve major questions of life evolution on Earth, and to look for unambiguous life traces, on Earth or beyond. The project ELiTE aims to provide key answers to some of these fundamental questions.
Astrobiology studies the origin, evolution and distribution of life in the Universe, starting with life on Earth, the only biological planet known so far. The ambitious objectives of the project ELiTE are the following:
1) The identification of Early traces of life and their preservation conditions, in Precambrian rocks of established age
2) The characterization of their biological affinities, using innovative approaches comprising micro to nanoscale morphological, ultrastructural and chemical analyses of fossil and recent analog material
3) The determination of the timing of major steps in evolution. In particular, the project ELiTE aims to decipher two major and inter-related steps in early life evolution and the rise of biological complexity: the evolution of cyanobacteria, responsible for Earth oxygenation and ancestor of the chloroplast, influencing drastically the evolution of life and the planet Earth, and the evolution of the domain Eucarya since LECA (Last Eucaryotic Universal Ancestor).
4) The determination of causes of observed pattern of evolution in relation with the environmental context (oxygenation, impacts, glaciations, tectonics, nutrient availability in changing ocean chemistry) and biological innovations and interactions (ecosystems evolution).
Objective 1 has implications for the search for unambiguous traces of life on Earth and beyond Earth. Objectives 2 to 4 have implications for the understanding of causes and patterns of biological evolution and rise of complexity in Earth life. Providing answers to these most fundamental questions will have major impact on our understanding of early life evolution, with implications for the search for life beyond Earth.
Max ERC Funding
1 470 736 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym GASPARCON
Project Molecular steps of gas-to-particle conversion: From oxidation to precursors, clusters and secondary aerosol particles.
Researcher (PI) Mikko SIPILÄ
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary Atmospheric aerosol particles impact Earth’s climate, by directly scattering sunlight and indirectly by affecting cloud properties. The largest uncertainties in climate change projections are associated with the atmospheric aerosol system that has been altered by anthropogenic activities. A major source of that uncertainty involves the formation of secondary particles and cloud condensation nuclei from natural and anthropogenic emissions of volatile compounds. This research challenge persists despite significant efforts within recent decades.
I will build a research group that aims to resolve the atmospheric oxidation processes that convert volatile trace gases to particle precursor vapours, clusters and new aerosol particles. We will create novel measurement techniques and utilize the tremendous potential of mass spectrometry for detection of i) particle precursor vapours ii) oxidants, both conventional but also recently discovered stabilized Criegee intermediates, and, most importantly, iii) newly formed clusters. These methods and instrumentation will be applied for resolving the initial steps of new particle formation on molecular level from oxidation to clusters and stable aerosol particles. To reach these goals, targeted laboratory and field experiments together with long term field measurements will be performed employing the state-of-the-art instrumentation developed.
Principal outcomes of this project include i) new experimental methods and techniques vital for atmospheric research and a deep understanding of ii) oxidation pathways producing aerosol particle precursors, iii) the initial molecular steps of new particle formation and iv) mechanisms of growth of freshly formed clusters toward larger sizes, particularly in the crucial size range of a few nanometers. The conceptual understanding obtained during this project will open multiple new research horizons from oxidation chemistry to Earth system modeling.
Summary
Atmospheric aerosol particles impact Earth’s climate, by directly scattering sunlight and indirectly by affecting cloud properties. The largest uncertainties in climate change projections are associated with the atmospheric aerosol system that has been altered by anthropogenic activities. A major source of that uncertainty involves the formation of secondary particles and cloud condensation nuclei from natural and anthropogenic emissions of volatile compounds. This research challenge persists despite significant efforts within recent decades.
I will build a research group that aims to resolve the atmospheric oxidation processes that convert volatile trace gases to particle precursor vapours, clusters and new aerosol particles. We will create novel measurement techniques and utilize the tremendous potential of mass spectrometry for detection of i) particle precursor vapours ii) oxidants, both conventional but also recently discovered stabilized Criegee intermediates, and, most importantly, iii) newly formed clusters. These methods and instrumentation will be applied for resolving the initial steps of new particle formation on molecular level from oxidation to clusters and stable aerosol particles. To reach these goals, targeted laboratory and field experiments together with long term field measurements will be performed employing the state-of-the-art instrumentation developed.
Principal outcomes of this project include i) new experimental methods and techniques vital for atmospheric research and a deep understanding of ii) oxidation pathways producing aerosol particle precursors, iii) the initial molecular steps of new particle formation and iv) mechanisms of growth of freshly formed clusters toward larger sizes, particularly in the crucial size range of a few nanometers. The conceptual understanding obtained during this project will open multiple new research horizons from oxidation chemistry to Earth system modeling.
Max ERC Funding
1 953 790 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ISOBOREAL
Project Towards Understanding the Impact of Climate Change on Eurasian Boreal Forests: a Novel Stable Isotope Approach
Researcher (PI) Katja Teresa RINNE-GARMSTON
Host Institution (HI) LUONNONVARAKESKUS
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Summary
The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Max ERC Funding
1 814 610 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ISOSYC
Project Initial Solar System Composition and Early Planetary Differentiation
Researcher (PI) Vinciane Chantal A Debaille
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary Meteorites are privileged witnesses of solar system accretion processes and early planetary evolution. Short-lived radioactive chronometers are particularly adapted in dating and understanding these early differentiation processes. This proposal is dedicated to two main questions: (1) what is the initial composition of the solar system and terrestrial planets?; (2) having refined these parameters, how and when silicate bodies differentiated?
Among short-lived chronometers, the system 146Sm-142Nd is particularly adapted to solve these questions. While it is generally assumed that the global bulk composition of Earth and other terrestrial planets is chondritic for refractory elements such as Sm and Nd, it has recently been shown that the 142Nd/144Nd values display a systematic and reproducible bias between all the chondrites and the average composition of the Earth, and also possibly of other planets. Several hypotheses have been proposed: (i) there is an enriched reservoir hidden deep in Earth, with a composition balancing the currently observed terrestrial composition in order to get a global chondritic composition for the Earth. (ii) The Earth and other terrestrial planets are non-chondritic for their composition in refractory elements. (iii) Nucleosynthetic anomalies have modified the isotopic composition measured in chondrites. (iv) The starting parameters of the 146Sm-142Nd system are not well defined. However, this last point has never been carefully evaluated.
The main scientific strategy of this proposal is based on reinvestigating with the best precision ever achieved the starting parameters of the 146Sm-142Nd systematic using the oldest objects of the solar system: Ca-Al inclusions and chondrules. The final goal of the present proposal is to determine if Earth and other planets are chondritic or not, and to understand the implications of their refined starting composition on their geological evolution in terms of early planetary differentiation.
Summary
Meteorites are privileged witnesses of solar system accretion processes and early planetary evolution. Short-lived radioactive chronometers are particularly adapted in dating and understanding these early differentiation processes. This proposal is dedicated to two main questions: (1) what is the initial composition of the solar system and terrestrial planets?; (2) having refined these parameters, how and when silicate bodies differentiated?
Among short-lived chronometers, the system 146Sm-142Nd is particularly adapted to solve these questions. While it is generally assumed that the global bulk composition of Earth and other terrestrial planets is chondritic for refractory elements such as Sm and Nd, it has recently been shown that the 142Nd/144Nd values display a systematic and reproducible bias between all the chondrites and the average composition of the Earth, and also possibly of other planets. Several hypotheses have been proposed: (i) there is an enriched reservoir hidden deep in Earth, with a composition balancing the currently observed terrestrial composition in order to get a global chondritic composition for the Earth. (ii) The Earth and other terrestrial planets are non-chondritic for their composition in refractory elements. (iii) Nucleosynthetic anomalies have modified the isotopic composition measured in chondrites. (iv) The starting parameters of the 146Sm-142Nd system are not well defined. However, this last point has never been carefully evaluated.
The main scientific strategy of this proposal is based on reinvestigating with the best precision ever achieved the starting parameters of the 146Sm-142Nd systematic using the oldest objects of the solar system: Ca-Al inclusions and chondrules. The final goal of the present proposal is to determine if Earth and other planets are chondritic or not, and to understand the implications of their refined starting composition on their geological evolution in terms of early planetary differentiation.
Max ERC Funding
1 485 299 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ITOP
Project Integrated Theory and Observations of the Pleistocene
Researcher (PI) Michel Crucifix
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary There are essentially two approaches to climate modelling. Over the past decades, efforts to understand climate dynamics have been dominated by computationally-intensive modelling aiming to include all possible processes, essentially by integrating the equations for the relevant physics. This is the bottom-up approach. However, even the largest models include many approximations and the cumulative effect of these approximations make it impossible to predict the evolution of climate over several tens of thousands of years. For this reason a more phenomenological approach is also useful. It consists in identifying coherent spatio-temporal structures in the climate time-series in order to understand how they interact. Theoretically, the two approaches focus on different levels of information and they should be complementary. In practice, they are generally perceived to be in philosophical opposition and there is no unifying methodological framework. Our ambition is to provide this methodological framework with a focus on climate dynamics at the scale of the Pleistocene (last 2 million years). We pursue a triple objective (1) the framework must be rigorous but flexible enough to test competing theories of ice ages (2) it must avoid circular reasonings associated with ``tuning'' (3) it must provide a credible basis to unify our knowledge of climate dynamics and provide a state-of-the-art ``prediction horizon''. To this end we propose a methodology spanning different but complementary disciplines: physical climatology, empirical palaeoclimatology, dynamical system analysis and applied Bayesian statistics. It is intended to have a wide applicability in climate science where there is an interest in using reduced-order representations of the climate system.
Summary
There are essentially two approaches to climate modelling. Over the past decades, efforts to understand climate dynamics have been dominated by computationally-intensive modelling aiming to include all possible processes, essentially by integrating the equations for the relevant physics. This is the bottom-up approach. However, even the largest models include many approximations and the cumulative effect of these approximations make it impossible to predict the evolution of climate over several tens of thousands of years. For this reason a more phenomenological approach is also useful. It consists in identifying coherent spatio-temporal structures in the climate time-series in order to understand how they interact. Theoretically, the two approaches focus on different levels of information and they should be complementary. In practice, they are generally perceived to be in philosophical opposition and there is no unifying methodological framework. Our ambition is to provide this methodological framework with a focus on climate dynamics at the scale of the Pleistocene (last 2 million years). We pursue a triple objective (1) the framework must be rigorous but flexible enough to test competing theories of ice ages (2) it must avoid circular reasonings associated with ``tuning'' (3) it must provide a credible basis to unify our knowledge of climate dynamics and provide a state-of-the-art ``prediction horizon''. To this end we propose a methodology spanning different but complementary disciplines: physical climatology, empirical palaeoclimatology, dynamical system analysis and applied Bayesian statistics. It is intended to have a wide applicability in climate science where there is an interest in using reduced-order representations of the climate system.
Max ERC Funding
1 047 600 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym MEMETRE
Project From processes to modelling of methane emissions from trees
Researcher (PI) Mari PIHLATIE
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.
The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget.
Summary
Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.
The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget.
Max ERC Funding
1 908 652 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym QAPPA
Project Quantifying the atmospheric implications of the solid phase and phase transitions of secondary organic aerosols
Researcher (PI) Annele Kirsi Katriina Virtanen
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary In our ground-breaking paper published in Nature we showed, that the atmospheric Secondary Organic Aerosol (SOA) particles formed in boreal forest can be amorphous solid in their physical phase. Our result has already re-directed the SOA related research. In the several follow-up studies, it has been shown that SOA particles generated in the laboratory chamber from different pre-cursors and in various conditions are amorphous solid.
My ultimate task is to quantify the atmospheric implications of the phase state of SOA particles. Solid phase of the particles implies surface-confined chemistry and kinetic vapour uptake limitations because mass transport (diffusion) of reactants within the aerosol particle bulk becomes the rate limiting step. The diffusivity of the molecules in particle bulk depends on the viscosity of the SOA material. Hence, it would be a scientific break-through, if the kinetic limitations or the viscosity of the SOA particles could be estimated since these factors are a key to quantify the atmospheric implications of amorphous solid phase of the particles.
To achieve the final goal of the research, measurement method development is needed as currently there is no method to quantify the viscosity of the SOA particles, or to study the kinetic limitations and surface-confined chemistry caused by the solid phase of nanometer sized SOA particles. The methodology that will be developed in the proposed study, aims ambitiously to quantify the essential factors affecting the atmospheric processes of the SOA particles. The developed methodology will be use in extensive measurement campaigns performed both in SOA chambers and in atmospheric measurement sites in Europe and in US maximising the global significance of the results gained in this study.
The project enables two scientific breakthroughs: 1) the new methodology applicable in the field of nanoparticle research and 2) the quantified atmospheric implications of the amorphous solid phase of particles.
Summary
In our ground-breaking paper published in Nature we showed, that the atmospheric Secondary Organic Aerosol (SOA) particles formed in boreal forest can be amorphous solid in their physical phase. Our result has already re-directed the SOA related research. In the several follow-up studies, it has been shown that SOA particles generated in the laboratory chamber from different pre-cursors and in various conditions are amorphous solid.
My ultimate task is to quantify the atmospheric implications of the phase state of SOA particles. Solid phase of the particles implies surface-confined chemistry and kinetic vapour uptake limitations because mass transport (diffusion) of reactants within the aerosol particle bulk becomes the rate limiting step. The diffusivity of the molecules in particle bulk depends on the viscosity of the SOA material. Hence, it would be a scientific break-through, if the kinetic limitations or the viscosity of the SOA particles could be estimated since these factors are a key to quantify the atmospheric implications of amorphous solid phase of the particles.
To achieve the final goal of the research, measurement method development is needed as currently there is no method to quantify the viscosity of the SOA particles, or to study the kinetic limitations and surface-confined chemistry caused by the solid phase of nanometer sized SOA particles. The methodology that will be developed in the proposed study, aims ambitiously to quantify the essential factors affecting the atmospheric processes of the SOA particles. The developed methodology will be use in extensive measurement campaigns performed both in SOA chambers and in atmospheric measurement sites in Europe and in US maximising the global significance of the results gained in this study.
The project enables two scientific breakthroughs: 1) the new methodology applicable in the field of nanoparticle research and 2) the quantified atmospheric implications of the amorphous solid phase of particles.
Max ERC Funding
1 499 612 €
Duration
Start date: 2014-02-01, End date: 2019-01-31