Project acronym ALGOCom
Project Novel Algorithmic Techniques through the Lens of Combinatorics
Researcher (PI) Parinya Chalermsook
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE6, ERC-2017-STG
Summary Real-world optimization problems pose major challenges to algorithmic research. For instance, (i) many important problems are believed to be intractable (i.e. NP-hard) and (ii) with the growth of data size, modern applications often require a decision making under {\em incomplete and dynamically changing input data}. After several decades of research, central problems in these domains have remained poorly understood (e.g. Is there an asymptotically most efficient binary search trees?) Existing algorithmic techniques either reach their limitation or are inherently tailored to special cases.
This project attempts to untangle this gap in the state of the art and seeks new interplay across multiple areas of algorithms, such as approximation algorithms, online algorithms, fixed-parameter tractable (FPT) algorithms, exponential time algorithms, and data structures. We propose new directions from the {\em structural perspectives} that connect the aforementioned algorithmic problems to basic questions in combinatorics.
Our approaches fall into one of the three broad schemes: (i) new structural theory, (ii) intermediate problems, and (iii) transfer of techniques. These directions partially build on the PI's successes in resolving more than ten classical problems in this context.
Resolving the proposed problems will likely revolutionize our understanding about algorithms and data structures and potentially unify techniques in multiple algorithmic regimes. Any progress is, in fact, already a significant contribution to the algorithms community. We suggest concrete intermediate goals that are of independent interest and have lower risks, so they are suitable for Ph.D students.
Summary
Real-world optimization problems pose major challenges to algorithmic research. For instance, (i) many important problems are believed to be intractable (i.e. NP-hard) and (ii) with the growth of data size, modern applications often require a decision making under {\em incomplete and dynamically changing input data}. After several decades of research, central problems in these domains have remained poorly understood (e.g. Is there an asymptotically most efficient binary search trees?) Existing algorithmic techniques either reach their limitation or are inherently tailored to special cases.
This project attempts to untangle this gap in the state of the art and seeks new interplay across multiple areas of algorithms, such as approximation algorithms, online algorithms, fixed-parameter tractable (FPT) algorithms, exponential time algorithms, and data structures. We propose new directions from the {\em structural perspectives} that connect the aforementioned algorithmic problems to basic questions in combinatorics.
Our approaches fall into one of the three broad schemes: (i) new structural theory, (ii) intermediate problems, and (iii) transfer of techniques. These directions partially build on the PI's successes in resolving more than ten classical problems in this context.
Resolving the proposed problems will likely revolutionize our understanding about algorithms and data structures and potentially unify techniques in multiple algorithmic regimes. Any progress is, in fact, already a significant contribution to the algorithms community. We suggest concrete intermediate goals that are of independent interest and have lower risks, so they are suitable for Ph.D students.
Max ERC Funding
1 411 258 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym COALA
Project Comprehensive molecular characterization of secondary organic aerosol formation in the atmosphere
Researcher (PI) Mikael Ehn
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Summary
Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Max ERC Funding
1 892 221 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym COMPUTED
Project Computational User Interface Design
Researcher (PI) Antti Olavi Oulasvirta
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary PROBLEM: Despite extensive research on human-computer interaction (HCI), no method exists that guarantees the optimal or even a provably good user interface (UI) design. The prevailing approach relies on heuristics and iteration, which can be costly and even ineffective, because UI design often involves combinatorially hard problems with immense design spaces, multiple objectives and constraints, and complex user behavior.
OBJECTIVES: COMPUTED establishes the foundations for optimizing UI designs. A design can be automatically optimized to given objectives and constraints by using combinatorial optimization methods that deploy predictive models of user behavior as objective functions. Although previous work has shown some improvements to usability, the scope has been restricted to keyboards and widgets. COMPUTED researches methods that can vastly expand the scope of optimizable problems. First, algorithmic support is developed for acquiring objective functions that cover the main human factors in a given HCI task. Second, formal analysis of decision problems in UI design allows combating a broader range of design tasks with efficient and appropriate optimization methods. Third, a novel interactive UI optimization paradigm for UI designers promotes fast convergence to good results even in the face of uncertainty and incomplete knowledge.
IMPACT: Combinatorial UI optimization offers a strong complement to the prevailing design approaches. Because the structured search process has a high chance of finding good solutions, optimization could improve the quality of interfaces used in everyday life. Optimization can also increase cost-efficiency, because reference to optimality can eliminate fruitless iteration. Moreover, because no preknowledge of UI design is required, even novices will be able to design great UIs. Even in “messy,” less well-defined problems, it may support designers by allowing them to delegate the solving of well-known sub-problems.
Summary
PROBLEM: Despite extensive research on human-computer interaction (HCI), no method exists that guarantees the optimal or even a provably good user interface (UI) design. The prevailing approach relies on heuristics and iteration, which can be costly and even ineffective, because UI design often involves combinatorially hard problems with immense design spaces, multiple objectives and constraints, and complex user behavior.
OBJECTIVES: COMPUTED establishes the foundations for optimizing UI designs. A design can be automatically optimized to given objectives and constraints by using combinatorial optimization methods that deploy predictive models of user behavior as objective functions. Although previous work has shown some improvements to usability, the scope has been restricted to keyboards and widgets. COMPUTED researches methods that can vastly expand the scope of optimizable problems. First, algorithmic support is developed for acquiring objective functions that cover the main human factors in a given HCI task. Second, formal analysis of decision problems in UI design allows combating a broader range of design tasks with efficient and appropriate optimization methods. Third, a novel interactive UI optimization paradigm for UI designers promotes fast convergence to good results even in the face of uncertainty and incomplete knowledge.
IMPACT: Combinatorial UI optimization offers a strong complement to the prevailing design approaches. Because the structured search process has a high chance of finding good solutions, optimization could improve the quality of interfaces used in everyday life. Optimization can also increase cost-efficiency, because reference to optimality can eliminate fruitless iteration. Moreover, because no preknowledge of UI design is required, even novices will be able to design great UIs. Even in “messy,” less well-defined problems, it may support designers by allowing them to delegate the solving of well-known sub-problems.
Max ERC Funding
1 499 790 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym EVERYSOUND
Project Computational Analysis of Everyday Soundscapes
Researcher (PI) Tuomas Oskari Virtanen
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easily and unobtrusively be captured e.g. by mobile phones and transmitted further – for example, tens of hours of audio is uploaded to the internet every minute e.g. in the form of YouTube videos. However, today's technology is not able to recognize individual sound sources in realistic soundscapes, where multiple sounds are present, often simultaneously, and distorted by the environment.
The ground-breaking objective of EVERYSOUND is to develop computational methods which will automatically provide high-level descriptions of environmental sounds in realistic everyday soundscapes such as street, park, home, etc. This requires developing several novel methods, including joint source separation and robust pattern classification algorithms to reliably recognize multiple overlapping sounds, and a hierarchical multilayer taxonomy to accurately categorize everyday sounds. The methods are based on the applicant's internationally recognized and awarded expertise on source separation and robust pattern recognition in speech and music processing, which will allow now tackling the new and challenging research area of everyday sound recognition.
The results of EVERYSOUND will enable searching for multimedia based on its audio content, which is not possible with today's technology. It will allow mobile devices, robots, and intelligent monitoring systems to recognize activities in their environments using acoustic information. Producing automatically descriptions of vast quantities of audio will give new tools for geographical, social, cultural, and biological studies to analyze sounds related to human, animal, and natural activity in urban and rural areas, as well as multimedia in social networks.
Summary
Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easily and unobtrusively be captured e.g. by mobile phones and transmitted further – for example, tens of hours of audio is uploaded to the internet every minute e.g. in the form of YouTube videos. However, today's technology is not able to recognize individual sound sources in realistic soundscapes, where multiple sounds are present, often simultaneously, and distorted by the environment.
The ground-breaking objective of EVERYSOUND is to develop computational methods which will automatically provide high-level descriptions of environmental sounds in realistic everyday soundscapes such as street, park, home, etc. This requires developing several novel methods, including joint source separation and robust pattern classification algorithms to reliably recognize multiple overlapping sounds, and a hierarchical multilayer taxonomy to accurately categorize everyday sounds. The methods are based on the applicant's internationally recognized and awarded expertise on source separation and robust pattern recognition in speech and music processing, which will allow now tackling the new and challenging research area of everyday sound recognition.
The results of EVERYSOUND will enable searching for multimedia based on its audio content, which is not possible with today's technology. It will allow mobile devices, robots, and intelligent monitoring systems to recognize activities in their environments using acoustic information. Producing automatically descriptions of vast quantities of audio will give new tools for geographical, social, cultural, and biological studies to analyze sounds related to human, animal, and natural activity in urban and rural areas, as well as multimedia in social networks.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym GASPARCON
Project Molecular steps of gas-to-particle conversion: From oxidation to precursors, clusters and secondary aerosol particles.
Researcher (PI) Mikko SIPILÄ
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary Atmospheric aerosol particles impact Earth’s climate, by directly scattering sunlight and indirectly by affecting cloud properties. The largest uncertainties in climate change projections are associated with the atmospheric aerosol system that has been altered by anthropogenic activities. A major source of that uncertainty involves the formation of secondary particles and cloud condensation nuclei from natural and anthropogenic emissions of volatile compounds. This research challenge persists despite significant efforts within recent decades.
I will build a research group that aims to resolve the atmospheric oxidation processes that convert volatile trace gases to particle precursor vapours, clusters and new aerosol particles. We will create novel measurement techniques and utilize the tremendous potential of mass spectrometry for detection of i) particle precursor vapours ii) oxidants, both conventional but also recently discovered stabilized Criegee intermediates, and, most importantly, iii) newly formed clusters. These methods and instrumentation will be applied for resolving the initial steps of new particle formation on molecular level from oxidation to clusters and stable aerosol particles. To reach these goals, targeted laboratory and field experiments together with long term field measurements will be performed employing the state-of-the-art instrumentation developed.
Principal outcomes of this project include i) new experimental methods and techniques vital for atmospheric research and a deep understanding of ii) oxidation pathways producing aerosol particle precursors, iii) the initial molecular steps of new particle formation and iv) mechanisms of growth of freshly formed clusters toward larger sizes, particularly in the crucial size range of a few nanometers. The conceptual understanding obtained during this project will open multiple new research horizons from oxidation chemistry to Earth system modeling.
Summary
Atmospheric aerosol particles impact Earth’s climate, by directly scattering sunlight and indirectly by affecting cloud properties. The largest uncertainties in climate change projections are associated with the atmospheric aerosol system that has been altered by anthropogenic activities. A major source of that uncertainty involves the formation of secondary particles and cloud condensation nuclei from natural and anthropogenic emissions of volatile compounds. This research challenge persists despite significant efforts within recent decades.
I will build a research group that aims to resolve the atmospheric oxidation processes that convert volatile trace gases to particle precursor vapours, clusters and new aerosol particles. We will create novel measurement techniques and utilize the tremendous potential of mass spectrometry for detection of i) particle precursor vapours ii) oxidants, both conventional but also recently discovered stabilized Criegee intermediates, and, most importantly, iii) newly formed clusters. These methods and instrumentation will be applied for resolving the initial steps of new particle formation on molecular level from oxidation to clusters and stable aerosol particles. To reach these goals, targeted laboratory and field experiments together with long term field measurements will be performed employing the state-of-the-art instrumentation developed.
Principal outcomes of this project include i) new experimental methods and techniques vital for atmospheric research and a deep understanding of ii) oxidation pathways producing aerosol particle precursors, iii) the initial molecular steps of new particle formation and iv) mechanisms of growth of freshly formed clusters toward larger sizes, particularly in the crucial size range of a few nanometers. The conceptual understanding obtained during this project will open multiple new research horizons from oxidation chemistry to Earth system modeling.
Max ERC Funding
1 953 790 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym ISOBOREAL
Project Towards Understanding the Impact of Climate Change on Eurasian Boreal Forests: a Novel Stable Isotope Approach
Researcher (PI) Katja Teresa RINNE-GARMSTON
Host Institution (HI) LUONNONVARAKESKUS
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Summary
The vast boreal forests play a critical role in the carbon cycle. As a consequence of increasing temperature and atmospheric CO2, forest growth and subsequently carbon sequestration may be strongly affected. It is thus crucial to understand and predict the consequences of climate change on these ecosystems. Stable isotope analysis of tree rings represents a versatile archive where the effects of environmental changes are recorded. The main goal of the project is to obtain a better understanding of δ13C and δ18O in tree rings that can be used to infer the response of forests to climate change. The goal is achieved by a detailed analysis of the incorporation and fractionation of isotopes in trees using four novel methods: (1) We will measure compound-specific δ13C and δ18O of leaf sugars and (2) combine these with intra-annual δ13C and δ18O analysis of tree rings. The approaches are enabled by methodological developments made by me and ISOBOREAL collaborators (Rinne et al. 2012, Lehmann et al. 2016, Loader et al. in prep.). Our aim is to determine δ13C and δ18O dynamics of individual sugars in response to climatic and physiological factors, and to define how these signals are altered before being stored in tree rings. The improved mechanistic understanding will be applied on tree ring isotope chronologies to infer the response of the studied forests to climate change. (3) The fact that δ18O in tree rings is a mixture of source and leaf water signals is a major problem for its application on climate studies. To solve this we aim to separate the two signals using position-specific δ18O analysis on tree ring cellulose for the first time, which we will achieve by developing novel methods. (4) We will for the first time link the climate signal both in leaf sugars and annual rings with measured ecosystem exchange of greenhouse gases CO2 and H2O using eddy-covariance techniques.
Max ERC Funding
1 814 610 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym MEMETRE
Project From processes to modelling of methane emissions from trees
Researcher (PI) Mari PIHLATIE
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.
The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget.
Summary
Atmospheric concentration of the strong greenhouse gas methane (CH4) is rising with an increased annual growth rate. Biosphere has an important role in the global CH4 budget, but high uncertainties remain in the strength of its different sink and source components. Among the natural sources, the contribution of vegetation to the global CH4 budget is the least well understood. Role of trees to the CH4 budget of forest ecosystems has long been overlooked due to the perception that trees do not play a role in the CH4 dynamics. Methanogenic Archaea were long considered as the sole CH4 producing organisms, while new findings of aerobic CH4 production in terrestrial vegetation and in fungi show our incomplete understanding of the CH4 cycling processes. Enclosure measurements from trees reveal that trees can emit CH4 and may substantially contribute to the net CH4 exchange of forests.
The main aim of MEMETRE project is to raise the process-based understanding of CH4 exchange in boreal and temperate forests to the level where we can construct a sound process model for the soil-tree-atmosphere CH4 exchange. We will achieve this by novel laboratory and field experiment focusing on newly identified processes, quantifying CH4 fluxes, seasonal and daily variability and drivers of CH4 at leaf-level, tree and ecosystem level. We use novel CH4 flux measurement techniques to identify the roles of fungal and methanogenic production and transport mechanisms to the CH4 emission from trees, and we synthesize the experimental work to build a process model including CH4 exchange processes within trees and the soil, transport of CH4 between the soil and the trees, and transport of CH4 within the trees. The project will revolutionize our understanding of CH4 flux dynamics in forest ecosystems. It will significantly narrow down the high uncertainties in boreal and temperate forests for their contribution to the global CH4 budget.
Max ERC Funding
1 908 652 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym QAPPA
Project Quantifying the atmospheric implications of the solid phase and phase transitions of secondary organic aerosols
Researcher (PI) Annele Kirsi Katriina Virtanen
Host Institution (HI) ITA-SUOMEN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary In our ground-breaking paper published in Nature we showed, that the atmospheric Secondary Organic Aerosol (SOA) particles formed in boreal forest can be amorphous solid in their physical phase. Our result has already re-directed the SOA related research. In the several follow-up studies, it has been shown that SOA particles generated in the laboratory chamber from different pre-cursors and in various conditions are amorphous solid.
My ultimate task is to quantify the atmospheric implications of the phase state of SOA particles. Solid phase of the particles implies surface-confined chemistry and kinetic vapour uptake limitations because mass transport (diffusion) of reactants within the aerosol particle bulk becomes the rate limiting step. The diffusivity of the molecules in particle bulk depends on the viscosity of the SOA material. Hence, it would be a scientific break-through, if the kinetic limitations or the viscosity of the SOA particles could be estimated since these factors are a key to quantify the atmospheric implications of amorphous solid phase of the particles.
To achieve the final goal of the research, measurement method development is needed as currently there is no method to quantify the viscosity of the SOA particles, or to study the kinetic limitations and surface-confined chemistry caused by the solid phase of nanometer sized SOA particles. The methodology that will be developed in the proposed study, aims ambitiously to quantify the essential factors affecting the atmospheric processes of the SOA particles. The developed methodology will be use in extensive measurement campaigns performed both in SOA chambers and in atmospheric measurement sites in Europe and in US maximising the global significance of the results gained in this study.
The project enables two scientific breakthroughs: 1) the new methodology applicable in the field of nanoparticle research and 2) the quantified atmospheric implications of the amorphous solid phase of particles.
Summary
In our ground-breaking paper published in Nature we showed, that the atmospheric Secondary Organic Aerosol (SOA) particles formed in boreal forest can be amorphous solid in their physical phase. Our result has already re-directed the SOA related research. In the several follow-up studies, it has been shown that SOA particles generated in the laboratory chamber from different pre-cursors and in various conditions are amorphous solid.
My ultimate task is to quantify the atmospheric implications of the phase state of SOA particles. Solid phase of the particles implies surface-confined chemistry and kinetic vapour uptake limitations because mass transport (diffusion) of reactants within the aerosol particle bulk becomes the rate limiting step. The diffusivity of the molecules in particle bulk depends on the viscosity of the SOA material. Hence, it would be a scientific break-through, if the kinetic limitations or the viscosity of the SOA particles could be estimated since these factors are a key to quantify the atmospheric implications of amorphous solid phase of the particles.
To achieve the final goal of the research, measurement method development is needed as currently there is no method to quantify the viscosity of the SOA particles, or to study the kinetic limitations and surface-confined chemistry caused by the solid phase of nanometer sized SOA particles. The methodology that will be developed in the proposed study, aims ambitiously to quantify the essential factors affecting the atmospheric processes of the SOA particles. The developed methodology will be use in extensive measurement campaigns performed both in SOA chambers and in atmospheric measurement sites in Europe and in US maximising the global significance of the results gained in this study.
The project enables two scientific breakthroughs: 1) the new methodology applicable in the field of nanoparticle research and 2) the quantified atmospheric implications of the amorphous solid phase of particles.
Max ERC Funding
1 499 612 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym SCARE
Project Side-Channel Aware Engineering
Researcher (PI) Billy Bob BRUMLEY
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE6, ERC-2018-STG
Summary "As the recent ""HeartBleed"" bug in OpenSSL demonstrates, the security of cryptographic software and devices cannot be understated. They build the foundation for basic security guarantees such as confidentiality and authentication, enabling technologies such as secure communication. For example, Transport Layer Security enables e-commerce, a 1.9 trillion USD global industry in 2016.
The more modern trend, especially in the embedded space, is towards hardware-assisted security. Here the aim is to leverage hardware to accomplish security goals that are simply unrealistic in software-only solutions. One example is Trusted Execution Environments (TEE) that provide a secure sandbox to execute security-critical software. TEEs, often driven by ARM TrustZone Technology, are present in the majority of smartphones on the market today.
Side-channel analysis (SCA) is a cryptanalytic technique that targets not the formal description of a cryptographic primitive but the implementation of it. Examples of side-channels include power consumption, electro-magnetic radiation, acoustic emanations, and various timings. Attackers then use this auxiliary signal to recover critical algorithm state and, in combination with cryptanalytic techniques, secret key material. This is a young but very active field within security and cryptography stemming from covert channels.
SCA is the focus of SCARE. Objectives include the discovery of next generation covert channels, paving the way for novel SCA classes, and extending these to full-fledged end-to-end SCA attacks by identifying specific vulnerabilities in widely-deployed cryptography software libraries such as OpenSSL and hardware-assisted security technologies such as TEEs. In turn, SCARE will deliver a methodology for SCA security assurance: not just development, evaluation, and deployment of acute countermeasures, but bringing SCA into the product life cycle as part of continuous integration."
Summary
"As the recent ""HeartBleed"" bug in OpenSSL demonstrates, the security of cryptographic software and devices cannot be understated. They build the foundation for basic security guarantees such as confidentiality and authentication, enabling technologies such as secure communication. For example, Transport Layer Security enables e-commerce, a 1.9 trillion USD global industry in 2016.
The more modern trend, especially in the embedded space, is towards hardware-assisted security. Here the aim is to leverage hardware to accomplish security goals that are simply unrealistic in software-only solutions. One example is Trusted Execution Environments (TEE) that provide a secure sandbox to execute security-critical software. TEEs, often driven by ARM TrustZone Technology, are present in the majority of smartphones on the market today.
Side-channel analysis (SCA) is a cryptanalytic technique that targets not the formal description of a cryptographic primitive but the implementation of it. Examples of side-channels include power consumption, electro-magnetic radiation, acoustic emanations, and various timings. Attackers then use this auxiliary signal to recover critical algorithm state and, in combination with cryptanalytic techniques, secret key material. This is a young but very active field within security and cryptography stemming from covert channels.
SCA is the focus of SCARE. Objectives include the discovery of next generation covert channels, paving the way for novel SCA classes, and extending these to full-fledged end-to-end SCA attacks by identifying specific vulnerabilities in widely-deployed cryptography software libraries such as OpenSSL and hardware-assisted security technologies such as TEEs. In turn, SCARE will deliver a methodology for SCA security assurance: not just development, evaluation, and deployment of acute countermeasures, but bringing SCA into the product life cycle as part of continuous integration."
Max ERC Funding
1 499 950 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym SURFACE
Project The unexplored world of aerosol surfaces and their impacts.
Researcher (PI) Nonne PRISLE
Host Institution (HI) OULUN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2016-STG
Summary We are changing the composition of Earth’s atmosphere, with profound consequences for the environment and our wellbeing. Tiny aerosol particles are globally responsible for much of the health effects and mortality related to air pollution and play key roles in regulating Earth’s climate via their critical influence on both radiation balance and cloud formation. Every single cloud droplet has been nucleated on the surface of an aerosol particle. Aerosols and droplets provide the media for condensed-phase chemistry in the atmosphere, but large gaps remain in our understanding of their formation, transformations, and climate interactions. Surface properties may play crucial roles in these processes, but currently next to nothing is known about the surfaces of atmospheric aerosols and cloud droplets and their impacts are almost entirely unconstrained. My recent work strongly suggests that such surfaces are significantly different from their associated bulk material and that these unique properties can impact aerosol processes all the way to the global scale. Very few surface-specific properties are currently considered when evaluating aerosol effects on atmospheric chemistry and global climate. Novel developments of cutting-edge computational and experimental methods, in particular synchrotron-based photoelectron spectroscopy, now for the first time makes direct molecular-level characterizations of atmospheric surfaces feasible. This project will demonstrate and quantify potential surface impacts in the atmosphere, by first directly characterizing realistic atmospheric surfaces, and then trace fingerprints of specific surface properties in a hierarchy of experimental and modelled aerosol processes and atmospheric effects. Successful demonstrations of unique aerosol surface fingerprints will constitute truly novel insights into a currently uncharted area of the atmospheric system and identify an entirely new frontier in aerosol research and atmospheric science.
Summary
We are changing the composition of Earth’s atmosphere, with profound consequences for the environment and our wellbeing. Tiny aerosol particles are globally responsible for much of the health effects and mortality related to air pollution and play key roles in regulating Earth’s climate via their critical influence on both radiation balance and cloud formation. Every single cloud droplet has been nucleated on the surface of an aerosol particle. Aerosols and droplets provide the media for condensed-phase chemistry in the atmosphere, but large gaps remain in our understanding of their formation, transformations, and climate interactions. Surface properties may play crucial roles in these processes, but currently next to nothing is known about the surfaces of atmospheric aerosols and cloud droplets and their impacts are almost entirely unconstrained. My recent work strongly suggests that such surfaces are significantly different from their associated bulk material and that these unique properties can impact aerosol processes all the way to the global scale. Very few surface-specific properties are currently considered when evaluating aerosol effects on atmospheric chemistry and global climate. Novel developments of cutting-edge computational and experimental methods, in particular synchrotron-based photoelectron spectroscopy, now for the first time makes direct molecular-level characterizations of atmospheric surfaces feasible. This project will demonstrate and quantify potential surface impacts in the atmosphere, by first directly characterizing realistic atmospheric surfaces, and then trace fingerprints of specific surface properties in a hierarchy of experimental and modelled aerosol processes and atmospheric effects. Successful demonstrations of unique aerosol surface fingerprints will constitute truly novel insights into a currently uncharted area of the atmospheric system and identify an entirely new frontier in aerosol research and atmospheric science.
Max ERC Funding
1 499 626 €
Duration
Start date: 2017-03-01, End date: 2022-02-28