Project acronym 3DCellPhase-
Project In situ Structural Analysis of Molecular Crowding and Phase Separation
Researcher (PI) Julia MAHAMID
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Summary
This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Max ERC Funding
1 228 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ACCORD
Project Algorithms for Complex Collective Decisions on Structured Domains
Researcher (PI) Edith Elkind
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Summary
Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Max ERC Funding
1 395 933 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ACDC
Project Algorithms and Complexity of Highly Decentralized Computations
Researcher (PI) Fabian Daniel Kuhn
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), PE6, ERC-2013-StG
Summary "Many of today's and tomorrow's computer systems are built on top of large-scale networks such as, e.g., the Internet, the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Driven by technological advances, new kinds of networks and applications have become possible and we can safely assume that this trend is going to continue. Often modern systems are envisioned to consist of a potentially large number of individual components that are organized in a completely decentralized way. There is no central authority that controls the topology of the network, how nodes join or leave the system, or in which way nodes communicate with each other. Also, many future distributed applications will be built using wireless devices that communicate via radio.
The general objective of the proposed project is to improve our understanding of the algorithmic and theoretical foundations of decentralized distributed systems. From an algorithmic point of view, decentralized networks and computations pose a number of fascinating and unique challenges that are not present in sequential or more standard distributed systems. As communication is limited and mostly between nearby nodes, each node of a large network can only maintain a very restricted view of the global state of the system. This is particularly true if the network can change dynamically, either by nodes joining or leaving the system or if the topology changes over time, e.g., because of the mobility of the devices in case of a wireless network. Nevertheless, the nodes of a network need to coordinate in order to achieve some global goal.
In particular, we plan to study algorithms and lower bounds for basic computation and information dissemination tasks in such systems. In addition, we are particularly interested in the complexity of distributed computations in dynamic and wireless networks."
Summary
"Many of today's and tomorrow's computer systems are built on top of large-scale networks such as, e.g., the Internet, the world wide web, wireless ad hoc and sensor networks, or peer-to-peer networks. Driven by technological advances, new kinds of networks and applications have become possible and we can safely assume that this trend is going to continue. Often modern systems are envisioned to consist of a potentially large number of individual components that are organized in a completely decentralized way. There is no central authority that controls the topology of the network, how nodes join or leave the system, or in which way nodes communicate with each other. Also, many future distributed applications will be built using wireless devices that communicate via radio.
The general objective of the proposed project is to improve our understanding of the algorithmic and theoretical foundations of decentralized distributed systems. From an algorithmic point of view, decentralized networks and computations pose a number of fascinating and unique challenges that are not present in sequential or more standard distributed systems. As communication is limited and mostly between nearby nodes, each node of a large network can only maintain a very restricted view of the global state of the system. This is particularly true if the network can change dynamically, either by nodes joining or leaving the system or if the topology changes over time, e.g., because of the mobility of the devices in case of a wireless network. Nevertheless, the nodes of a network need to coordinate in order to achieve some global goal.
In particular, we plan to study algorithms and lower bounds for basic computation and information dissemination tasks in such systems. In addition, we are particularly interested in the complexity of distributed computations in dynamic and wireless networks."
Max ERC Funding
1 148 000 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ACO
Project The Proceedings of the Ecumenical Councils from Oral Utterance to Manuscript Edition as Evidence for Late Antique Persuasion and Self-Representation Techniques
Researcher (PI) Peter Alfred Riedlberger
Host Institution (HI) OTTO-FRIEDRICH-UNIVERSITAET BAMBERG
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Summary
The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Max ERC Funding
1 497 250 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ACTMECH
Project Emergent Active Mechanical Behaviour of the Actomyosin Cell Cortex
Researcher (PI) Stephan Wolfgang Grill
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Starting Grant (StG), LS3, ERC-2011-StG_20101109
Summary The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Summary
The cell cortex is a highly dynamic layer of crosslinked actin filaments and myosin molecular motors beneath the cell membrane. It plays a central role in large scale rearrangements that occur inside cells. Many molecular mechanisms contribute to cortex structure and dynamics. However, cell scale physical properties of the cortex are difficult to grasp. This is problematic because for large scale rearrangements inside a cell, such as coherent flow of the cell cortex, it is the cell scale emergent properties that are important for the realization of such events. I will investigate how the actomyosin cytoskeleton behaves at a coarse grained and cellular scale, and will study how this emergent active behaviour is influenced by molecular mechanisms. We will study the cell cortex in the one cell stage C. elegans embryo, which undergoes large scale cortical flow during polarization and cytokinesis. We will combine theory and experiment. We will characterize cortex structure and dynamics with biophysical techniques such as cortical laser ablation and quantitative photobleaching experiments. We will develop and employ novel theoretical approaches to describe the cell scale mechanical behaviour in terms of an active complex fluid. We will utilize genetic approaches to understand how these emergent mechanical properties are influenced by molecular activities. A central goal is to arrive at a coarse grained description of the cortex that can predict future dynamic behaviour from the past structure, which is conceptually similar to how weather forecasting is accomplished. To date, systematic approaches to link molecular scale physical mechanisms to those on cellular scales are missing. This work will open new opportunities for cell biological and cell biophysical research, by providing a methodological approach for bridging scales, for studying emergent and large-scale active mechanical behaviours and linking them to molecular mechanisms.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-12-01, End date: 2017-08-31
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AncNar
Project Experience and Teleology in Ancient Narrative
Researcher (PI) Jonas Grethlein
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), SH5, ERC-2012-StG_20111124
Summary The last two decades have seen fascinating attempts to establish new narratologies, basing narratology on cognitive science or coupling it with other approaches such as postcolonial studies. While appreciating that these attempts have raised questions beyond the limits of structuralist narratology, critics have noted that by doing so they tend to abandon narratology’s strength, that is its analytical tools. In many cases, narratology has become a label that is as empty as it is fashionable. The project as outlined here, on the other hand, develops a new approach that combines the analytical arsenal of structuralist narratology with a phenomenological take on time in order to provide new answers as to the question of narrative’s function. By exploring the tension between experience and teleology in ancient literature, it sets out to demonstrate how narrative serves as a mode of coming to grips with time. Besides offering a new narratology that cross-fertilizes the strengths of different disciplines and pioneering a new approach to ancient literature, the project will steer the current debate on experience and presence into a new direction across disciplines in the humanities.
Summary
The last two decades have seen fascinating attempts to establish new narratologies, basing narratology on cognitive science or coupling it with other approaches such as postcolonial studies. While appreciating that these attempts have raised questions beyond the limits of structuralist narratology, critics have noted that by doing so they tend to abandon narratology’s strength, that is its analytical tools. In many cases, narratology has become a label that is as empty as it is fashionable. The project as outlined here, on the other hand, develops a new approach that combines the analytical arsenal of structuralist narratology with a phenomenological take on time in order to provide new answers as to the question of narrative’s function. By exploring the tension between experience and teleology in ancient literature, it sets out to demonstrate how narrative serves as a mode of coming to grips with time. Besides offering a new narratology that cross-fertilizes the strengths of different disciplines and pioneering a new approach to ancient literature, the project will steer the current debate on experience and presence into a new direction across disciplines in the humanities.
Max ERC Funding
1 383 840 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ANTICIPATE
Project Anticipatory Human-Computer Interaction
Researcher (PI) Andreas BULLING
Host Institution (HI) UNIVERSITAET STUTTGART
Call Details Starting Grant (StG), PE6, ERC-2018-STG
Summary Even after three decades of research on human-computer interaction (HCI), current general-purpose user interfaces (UI) still lack the ability to attribute mental states to their users, i.e. they fail to understand users' intentions and needs and to anticipate their actions. This drastically restricts their interactive capabilities.
ANTICIPATE aims to establish the scientific foundations for a new generation of user interfaces that pro-actively adapt to users' future input actions by monitoring their attention and predicting their interaction intentions - thereby significantly improving the naturalness, efficiency, and user experience of the interactions. Realising this vision of anticipatory human-computer interaction requires groundbreaking advances in everyday sensing of user attention from eye and brain activity. We will further pioneer methods to predict entangled user intentions and forecast interactive behaviour with fine temporal granularity during interactions in everyday stationary and mobile settings. Finally, we will develop fundamental interaction paradigms that enable anticipatory UIs to pro-actively adapt to users' attention and intentions in a mindful way. The new capabilities will be demonstrated in four challenging cases: 1) mobile information retrieval, 2) intelligent notification management, 3) Autism diagnosis and monitoring, and 4) computer-based training.
Anticipatory human-computer interaction offers a strong complement to existing UI paradigms that only react to user input post-hoc. If successful, ANTICIPATE will deliver the first important building blocks for implementing Theory of Mind in general-purpose UIs. As such, the project has the potential to drastically improve the billions of interactions we perform with computers every day, to trigger a wide range of follow-up research in HCI as well as adjacent areas within and outside computer science, and to act as a key technical enabler for new applications, e.g. in healthcare and education.
Summary
Even after three decades of research on human-computer interaction (HCI), current general-purpose user interfaces (UI) still lack the ability to attribute mental states to their users, i.e. they fail to understand users' intentions and needs and to anticipate their actions. This drastically restricts their interactive capabilities.
ANTICIPATE aims to establish the scientific foundations for a new generation of user interfaces that pro-actively adapt to users' future input actions by monitoring their attention and predicting their interaction intentions - thereby significantly improving the naturalness, efficiency, and user experience of the interactions. Realising this vision of anticipatory human-computer interaction requires groundbreaking advances in everyday sensing of user attention from eye and brain activity. We will further pioneer methods to predict entangled user intentions and forecast interactive behaviour with fine temporal granularity during interactions in everyday stationary and mobile settings. Finally, we will develop fundamental interaction paradigms that enable anticipatory UIs to pro-actively adapt to users' attention and intentions in a mindful way. The new capabilities will be demonstrated in four challenging cases: 1) mobile information retrieval, 2) intelligent notification management, 3) Autism diagnosis and monitoring, and 4) computer-based training.
Anticipatory human-computer interaction offers a strong complement to existing UI paradigms that only react to user input post-hoc. If successful, ANTICIPATE will deliver the first important building blocks for implementing Theory of Mind in general-purpose UIs. As such, the project has the potential to drastically improve the billions of interactions we perform with computers every day, to trigger a wide range of follow-up research in HCI as well as adjacent areas within and outside computer science, and to act as a key technical enabler for new applications, e.g. in healthcare and education.
Max ERC Funding
1 499 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym APOQUANT
Project The quantitative Bcl-2 interactome in apoptosis: decoding how cancer cells escape death
Researcher (PI) Ana Jesús García Sáez
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), LS3, ERC-2012-StG_20111109
Summary The proteins of the Bcl-2 family function as key regulators of apoptosis by controlling the permeabilization of the mitochondrial outer membrane. They form an intricate, fine-tuned interaction network which is altered in cancer cells to avoid cell death. Currently, we do not understand how signaling within this network, which combines events in cytosol and membranes, is orchestrated to decide the cell fate. The main goal of this proposal is to unravel how apoptosis signaling is integrated by the Bcl-2 network by determining the quantitative Bcl-2 interactome and building with it a mathematical model that identifies which interactions determine the overall outcome. To this aim, we have established a reconstituted system for the quantification of the interactions between Bcl-2 proteins not only in solution but also in membranes at the single molecule level by fluorescence correlation spectroscopy (FCS).
(1) This project aims to quantify the relative affinities between an reconstituted Bcl-2 network by FCS.
(2) This will be combined with quantitative studies in living cells, which include the signaling pathway in its entirety. To this aim, we will develop new FCS methods for mitochondria.
(3) The structural and dynamic aspects of the Bcl-2 network will be studied by super resolution and live cell microscopy.
(4) The acquired knowledge will be used to build a mathematical model that uncovers how the multiple interactions within the Bcl-2 network are integrated and identifies critical steps in apoptosis regulation.
These studies are expected to broaden the general knowledge about the design principles of cellular signaling as well as how cancer cells alter the Bcl-2 network to escape cell death. This systems analysis will allow us to predict which perturbations in the Bcl-2 network of cancer cells can switch signaling towards cell death. Ultimately it could be translated into clinical applications for anticancer therapy.
Summary
The proteins of the Bcl-2 family function as key regulators of apoptosis by controlling the permeabilization of the mitochondrial outer membrane. They form an intricate, fine-tuned interaction network which is altered in cancer cells to avoid cell death. Currently, we do not understand how signaling within this network, which combines events in cytosol and membranes, is orchestrated to decide the cell fate. The main goal of this proposal is to unravel how apoptosis signaling is integrated by the Bcl-2 network by determining the quantitative Bcl-2 interactome and building with it a mathematical model that identifies which interactions determine the overall outcome. To this aim, we have established a reconstituted system for the quantification of the interactions between Bcl-2 proteins not only in solution but also in membranes at the single molecule level by fluorescence correlation spectroscopy (FCS).
(1) This project aims to quantify the relative affinities between an reconstituted Bcl-2 network by FCS.
(2) This will be combined with quantitative studies in living cells, which include the signaling pathway in its entirety. To this aim, we will develop new FCS methods for mitochondria.
(3) The structural and dynamic aspects of the Bcl-2 network will be studied by super resolution and live cell microscopy.
(4) The acquired knowledge will be used to build a mathematical model that uncovers how the multiple interactions within the Bcl-2 network are integrated and identifies critical steps in apoptosis regulation.
These studies are expected to broaden the general knowledge about the design principles of cellular signaling as well as how cancer cells alter the Bcl-2 network to escape cell death. This systems analysis will allow us to predict which perturbations in the Bcl-2 network of cancer cells can switch signaling towards cell death. Ultimately it could be translated into clinical applications for anticancer therapy.
Max ERC Funding
1 462 900 €
Duration
Start date: 2013-04-01, End date: 2019-03-31