Project acronym Antibodyomics
Project Vaccine profiling and immunodiagnostic discovery by high-throughput antibody repertoire analysis
Researcher (PI) Sai Tota Reddy
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Summary
Vaccines and immunodiagnostics have been vital for public health and medicine, however a quantitative molecular understanding of vaccine-induced antibody responses is lacking. Antibody research is currently going through a big-data driven revolution, largely due to progress in next-generation sequencing (NGS) and bioinformatic analysis of antibody repertoires. A main advantage of high-throughput antibody repertoire analysis is that it provides a wealth of quantitative information not possible with other classical methods of antibody analysis (i.e., serum titers); this information includes: clonal distribution and diversity, somatic hypermutation patterns, and lineage tracing. In preliminary work my group has established standardized methods for antibody repertoire NGS, including an experimental-bioinformatic pipeline for error and bias correction that enables highly accurate repertoire sequencing and analysis. The overall goal of this proposal will be to apply high-throughput antibody repertoire analysis for quantitative vaccine profiling and discovery of next-generation immunodiagnostics. Using mouse subunit vaccination as our model system, we will answer for the first time, a fundamental biological question within the context of antibody responses - what is the link between genotype (antibody repertoire) and phenotype (serum antibodies)? We will expand upon this approach for improved rational vaccine design by quantitatively determining the impact of a comprehensive set of subunit vaccination parameters on complete antibody landscapes. Finally, we will develop advanced bioinformatic methods to discover immunodiagnostics based on antibody repertoire sequences. In summary, this proposal lays the foundation for fundamentally new approaches in the quantitative analysis of antibody responses, which long-term will promote the development of next-generation vaccines and immunodiagnostics.
Max ERC Funding
1 492 586 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AxScale
Project Axions and relatives across different mass scales
Researcher (PI) Babette DÖBRICH
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Pseudoscalar QCD axions and axion-like Particles (ALPs) are an excellent candidate for Dark Matter or can act as a mediator particle for Dark Matter. Since the discovery of the Higgs boson, we know that fundamental scalars exist and it is timely to explore the Axion/ALP parameter space more intensively. A look at the allowed axion/ALP parameter space makes it clear that these might exist at low mass (below few eV), as (part of) Dark Matter. Alternatively they might exist at higher mass, above roughly the MeV scale, potentially as a Dark Matter mediator particle. AxScale explores parts of these different mass regions, with complementary techniques but with one research team.
Firstly, with RADES, it develops a novel concept for a filter-like cavity for the search of QCD axion Dark matter at a few tens of a micro-eV. Dark Matter Axions can be discovered by their resonant conversion in that cavity embedded in a strong magnetic field. The `classical axion window' has recently received much interest from cosmological model-building and I will implement a novel cavity concept that will allow to explore this Dark Matter parameter region.
Secondly, AxScale searches for axions and ALPs using the NA62 detector at CERN's SPS. Especially the mass region above a few MeV can be efficiently searched by the use of a proton fixed-target facility. During nominal data taking NA62 investigates a Kaon beam. NA62 can also run in a mode in which its primary proton beam is fully dumped. With the resulting high interaction rate, the existence of weakly coupled particles can be efficiently probed. Thus, searches for ALPs from Kaon decays as well as from production in dumped protons with NA62 are foreseen in AxScale. More generally, NA62 can look for a plethora of `Dark Sector' particles with recorded and future data. With the AxScale program I aim at maximizing the reach of NA62 for these new physics models.
Summary
Pseudoscalar QCD axions and axion-like Particles (ALPs) are an excellent candidate for Dark Matter or can act as a mediator particle for Dark Matter. Since the discovery of the Higgs boson, we know that fundamental scalars exist and it is timely to explore the Axion/ALP parameter space more intensively. A look at the allowed axion/ALP parameter space makes it clear that these might exist at low mass (below few eV), as (part of) Dark Matter. Alternatively they might exist at higher mass, above roughly the MeV scale, potentially as a Dark Matter mediator particle. AxScale explores parts of these different mass regions, with complementary techniques but with one research team.
Firstly, with RADES, it develops a novel concept for a filter-like cavity for the search of QCD axion Dark matter at a few tens of a micro-eV. Dark Matter Axions can be discovered by their resonant conversion in that cavity embedded in a strong magnetic field. The `classical axion window' has recently received much interest from cosmological model-building and I will implement a novel cavity concept that will allow to explore this Dark Matter parameter region.
Secondly, AxScale searches for axions and ALPs using the NA62 detector at CERN's SPS. Especially the mass region above a few MeV can be efficiently searched by the use of a proton fixed-target facility. During nominal data taking NA62 investigates a Kaon beam. NA62 can also run in a mode in which its primary proton beam is fully dumped. With the resulting high interaction rate, the existence of weakly coupled particles can be efficiently probed. Thus, searches for ALPs from Kaon decays as well as from production in dumped protons with NA62 are foreseen in AxScale. More generally, NA62 can look for a plethora of `Dark Sector' particles with recorded and future data. With the AxScale program I aim at maximizing the reach of NA62 for these new physics models.
Max ERC Funding
1 134 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BetaDropNMR
Project Ultra-sensitive NMR in liquids
Researcher (PI) Magdalena Kowalska-Wyrowska
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary "The nuclear magnetic resonance spectroscopy (NMR) is a versatile and powerful tool, especially in chemistry and in biology. However, its limited sensitivity and small amount of suitable probe nuclei pose severe constraints on the systems that may be explored.
This project aims at overcoming the above limitations by giving NMR an ultra-high sensitivity and by enlarging the NMR ""toolbox"" to dozens of nuclei across the periodic table. This will be achieved by applying the β-NMR method to the soft matter samples. The method relies on anisotropic emission of β particles in the decay of highly spin-polarized nuclei. This feature results in 10 orders of magnitude more sensitivity compared to conventional NMR and makes it applicable to elements which are otherwise difficult to investigate spectroscopically. β-NMR has been successfully applied in nuclear physics and material science in solid samples and high-vacuum environments, but never before to liquid samples placed in atmospheric pressure. With this novel approach I want to create a new universal and extremely sensitive tool to study various problems in biochemistry.
The first questions which I envisage addressing with this ground-breaking and versatile method concern the interaction of essential metal ions, which are spectroscopically silent in most techniques, Mg2+, Cu+, and Zn2+, with proteins and nucleic acids. The importance of these studies is well motivated by the fact that half of the proteins in our human body contain metal ions, but their interaction mechanism and factors influencing it are still not fully understood. In this respect NMR spectroscopy is of great help: it provides information on the structure, dynamics, and chemical properties of the metal complexes, by revealing the coordination number, oxidation state, bonding situation and electronic configuration of the interacting metal.
My long-term aim is to establish a firm basis for β-NMR in soft matter studies in biology, chemistry and physics."
Summary
"The nuclear magnetic resonance spectroscopy (NMR) is a versatile and powerful tool, especially in chemistry and in biology. However, its limited sensitivity and small amount of suitable probe nuclei pose severe constraints on the systems that may be explored.
This project aims at overcoming the above limitations by giving NMR an ultra-high sensitivity and by enlarging the NMR ""toolbox"" to dozens of nuclei across the periodic table. This will be achieved by applying the β-NMR method to the soft matter samples. The method relies on anisotropic emission of β particles in the decay of highly spin-polarized nuclei. This feature results in 10 orders of magnitude more sensitivity compared to conventional NMR and makes it applicable to elements which are otherwise difficult to investigate spectroscopically. β-NMR has been successfully applied in nuclear physics and material science in solid samples and high-vacuum environments, but never before to liquid samples placed in atmospheric pressure. With this novel approach I want to create a new universal and extremely sensitive tool to study various problems in biochemistry.
The first questions which I envisage addressing with this ground-breaking and versatile method concern the interaction of essential metal ions, which are spectroscopically silent in most techniques, Mg2+, Cu+, and Zn2+, with proteins and nucleic acids. The importance of these studies is well motivated by the fact that half of the proteins in our human body contain metal ions, but their interaction mechanism and factors influencing it are still not fully understood. In this respect NMR spectroscopy is of great help: it provides information on the structure, dynamics, and chemical properties of the metal complexes, by revealing the coordination number, oxidation state, bonding situation and electronic configuration of the interacting metal.
My long-term aim is to establish a firm basis for β-NMR in soft matter studies in biology, chemistry and physics."
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BETLIV
Project Returning to a Better Place: The (Re)assessment of the ‘Good Life’ in Times of Crisis
Researcher (PI) Valerio SIMONI RIBA
Host Institution (HI) FONDATION POUR L INSTITUT DE HAUTES ETUDES INTERNATIONALES ET DU DEVELOPPEMENT
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary What makes for a valuable and good life is a question that many people in the contemporary world ask themselves, yet it is one that social science research has seldom addressed. Only recently have scholars started undertaking inductive comparative research on different notions of the ‘good life’, highlighting socio-cultural variations and calling for a better understanding of the different imaginaries, aspirations and values that guide people in their quest for better living conditions. Research is still lacking, however, on how people themselves evaluate, compare, and put into perspective different visions of good living and their socio-cultural anchorage. This project addresses such questions from an anthropological perspective, proposing an innovative study of how ideals of the good life are articulated, (re)assessed, and related to specific places and contexts as a result of the experience of crisis and migration. The case studies chosen to operationalize these lines of enquiry focus on the phenomenon of return migration, and consist in an analysis of the imaginaries and experience of return by Ecuadorian and Cuban men and women who migrated to Spain, are dissatisfied with their life there, and envisage/carry out the project of going back to their countries of origin (Ecuador and Cuba respectively). The project’s ambition is to bring together and contribute to three main scholarly areas of enquiry: 1) the study of morality, ethics and what counts as ‘good life’, 2) the study of the field of economic practice, its definition, value regimes, and ‘crises’, and 3) the study of migratory aspirations, projects, and trajectories. A multi-sited endeavour, the research is designed in three subprojects carried out in Spain (PhD student), Ecuador (Post-Doc), and Cuba (PI), in which ethnographic methods will be used to provide the first empirically grounded study of the links between notions and experiences of crisis, return migration, and the (re)assessment of good living.
Summary
What makes for a valuable and good life is a question that many people in the contemporary world ask themselves, yet it is one that social science research has seldom addressed. Only recently have scholars started undertaking inductive comparative research on different notions of the ‘good life’, highlighting socio-cultural variations and calling for a better understanding of the different imaginaries, aspirations and values that guide people in their quest for better living conditions. Research is still lacking, however, on how people themselves evaluate, compare, and put into perspective different visions of good living and their socio-cultural anchorage. This project addresses such questions from an anthropological perspective, proposing an innovative study of how ideals of the good life are articulated, (re)assessed, and related to specific places and contexts as a result of the experience of crisis and migration. The case studies chosen to operationalize these lines of enquiry focus on the phenomenon of return migration, and consist in an analysis of the imaginaries and experience of return by Ecuadorian and Cuban men and women who migrated to Spain, are dissatisfied with their life there, and envisage/carry out the project of going back to their countries of origin (Ecuador and Cuba respectively). The project’s ambition is to bring together and contribute to three main scholarly areas of enquiry: 1) the study of morality, ethics and what counts as ‘good life’, 2) the study of the field of economic practice, its definition, value regimes, and ‘crises’, and 3) the study of migratory aspirations, projects, and trajectories. A multi-sited endeavour, the research is designed in three subprojects carried out in Spain (PhD student), Ecuador (Post-Doc), and Cuba (PI), in which ethnographic methods will be used to provide the first empirically grounded study of the links between notions and experiences of crisis, return migration, and the (re)assessment of good living.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BioProbe
Project "VERTICAL MICROFLUIDIC PROBE: A nanoliter ""Swiss army knife"" for chemistry and physics at biological interfaces"
Researcher (PI) Govindkrishna Govind Kaigala
Host Institution (HI) IBM RESEARCH GMBH
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Life is fundamentally characterised by order, compartmentalisation and biochemical reactions, which occurs at the right place right time – within, on the surface and between cells. Only a proportion of life processes can be addressed with contemporary approaches like liquid encapsulations (e.g. droplets) or engineering compartments (e.g. scaffolds). I believe these approaches are severely limited. I am convinced that a technique to study, work and locally probe adherent cells & tissues at micrometer distances from cell surfaces in “open space” would represent a major advance for the biology of biointerfaces. I therefore propose a non-contact, scanning technology, which spatially confines nanoliter volumes of chemicals for interacting with cells at the µm-length scale. This technology called the vertical microfluidic probe (vMFP) – that I developed at IBM-Zurich – shapes liquid on surfaces hydrodynamically and is compatible with samples on Petri dishes & microtiter plates. The project is organized in 4 themes:
(1) Advancing the vMFP by understanding the interaction of liquid flows with biointerfaces, integrating functional elements (e.g. heaters/electrodes, cell traps) & precision control.
(2) Developing a higher resolution method to stain tissue sections for multiple markers & better quality information.
(3) Retrieving rare elements such as circulating tumor cells from biologically diverse libraries.
(4) Patterning cells for applications in regenerative medicine.
Since cells & tissues will no longer be limited by closed systems, the vMFP will enable a completely new range of experiments to be performed in a highly interactive, versatile & precise manner – this approach departs from classical “closed” microfluidics. It is very likely that such a tool by providing multifunctional capabilities akin to the proverbial ‘Swiss army knife’ will be a unique facilitator for investigations of previously unapproachable problems in cell biology & the life science.
Summary
Life is fundamentally characterised by order, compartmentalisation and biochemical reactions, which occurs at the right place right time – within, on the surface and between cells. Only a proportion of life processes can be addressed with contemporary approaches like liquid encapsulations (e.g. droplets) or engineering compartments (e.g. scaffolds). I believe these approaches are severely limited. I am convinced that a technique to study, work and locally probe adherent cells & tissues at micrometer distances from cell surfaces in “open space” would represent a major advance for the biology of biointerfaces. I therefore propose a non-contact, scanning technology, which spatially confines nanoliter volumes of chemicals for interacting with cells at the µm-length scale. This technology called the vertical microfluidic probe (vMFP) – that I developed at IBM-Zurich – shapes liquid on surfaces hydrodynamically and is compatible with samples on Petri dishes & microtiter plates. The project is organized in 4 themes:
(1) Advancing the vMFP by understanding the interaction of liquid flows with biointerfaces, integrating functional elements (e.g. heaters/electrodes, cell traps) & precision control.
(2) Developing a higher resolution method to stain tissue sections for multiple markers & better quality information.
(3) Retrieving rare elements such as circulating tumor cells from biologically diverse libraries.
(4) Patterning cells for applications in regenerative medicine.
Since cells & tissues will no longer be limited by closed systems, the vMFP will enable a completely new range of experiments to be performed in a highly interactive, versatile & precise manner – this approach departs from classical “closed” microfluidics. It is very likely that such a tool by providing multifunctional capabilities akin to the proverbial ‘Swiss army knife’ will be a unique facilitator for investigations of previously unapproachable problems in cell biology & the life science.
Max ERC Funding
1 488 600 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym CFT-MAP
Project Charting the space of Conformal Field Theories: a combined nuMerical and Analytical aPproach
Researcher (PI) Alessandro VICHI
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary Conformal Field Theory (CFT) was originally conceived in four and three dimensions, with applications to particle physics and critical phenomena in mind. However, it is in two dimensions that the most spectacular results have been obtained. In higher dimensions, there used to be a general feeling that the constraining power of conformal symmetry by itself is insufficient to tell nontrivial things about the dynamics. Hence the interest in various additional assumptions. This is not fully satisfactory, since there are likely many CFTs that do not fulfill any of them.
The main focus of this proposal is to take a fresh look at the idea that the mathematical structure of CFTs is instead such a strong constraint that it can allow for a complete solution of the theory. This program, known as conformal bootstrap, has provided a new element in the quantum field theory toolbox to describe genuine non-perturbative cases.
This project aims to explore new directions and push forward the frontiers of conformal filed theories, with the ultimate objective of a detailed classification and understanding of scale invariant systems and their properties.
CFT-MAP will develop more efficient numerical techniques and complementary analytical tools making use of two main methods: by studying correlation functions of operators present in any quantum field theory, such as global symmetry conserved currents and the energy momentum tensor; by inspecting the analytical structure of correlation functions.
The project will scan the landscape of CFTs, identifying where and how they exist. By significantly improving over the methods at disposal, this proposal will be able to study theories currently are out of reach.
Besides the innovative methodologies, a fundamental outcome of CFT-MAP will be a word record determination of critical exponents in second phase transition, together with additional information that allows an approximate reconstruction of the QFT in the neighborhood of fixed points.
Summary
Conformal Field Theory (CFT) was originally conceived in four and three dimensions, with applications to particle physics and critical phenomena in mind. However, it is in two dimensions that the most spectacular results have been obtained. In higher dimensions, there used to be a general feeling that the constraining power of conformal symmetry by itself is insufficient to tell nontrivial things about the dynamics. Hence the interest in various additional assumptions. This is not fully satisfactory, since there are likely many CFTs that do not fulfill any of them.
The main focus of this proposal is to take a fresh look at the idea that the mathematical structure of CFTs is instead such a strong constraint that it can allow for a complete solution of the theory. This program, known as conformal bootstrap, has provided a new element in the quantum field theory toolbox to describe genuine non-perturbative cases.
This project aims to explore new directions and push forward the frontiers of conformal filed theories, with the ultimate objective of a detailed classification and understanding of scale invariant systems and their properties.
CFT-MAP will develop more efficient numerical techniques and complementary analytical tools making use of two main methods: by studying correlation functions of operators present in any quantum field theory, such as global symmetry conserved currents and the energy momentum tensor; by inspecting the analytical structure of correlation functions.
The project will scan the landscape of CFTs, identifying where and how they exist. By significantly improving over the methods at disposal, this proposal will be able to study theories currently are out of reach.
Besides the innovative methodologies, a fundamental outcome of CFT-MAP will be a word record determination of critical exponents in second phase transition, together with additional information that allows an approximate reconstruction of the QFT in the neighborhood of fixed points.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CONTROL
Project Behavioral Foundations of Power and Control
Researcher (PI) Holger HERZ
Host Institution (HI) UNIVERSITE DE FRIBOURG
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Power relations are an integral part of economic organizations, as well as political and social institutions. People exercise power over others – or are exposed to the power of others – in government, in firms, and even in families. People care deeply about power and autonomy, and attitudes towards them have important economic and societal consequences. Examples include such diverse matters as the willingness to delegate power to government, empire building in public organizations, or sorting into more or less autonomous jobs. Despite their importance, we have remarkably little knowledge about preferences for power and autonomy. Clearly, power and autonomy are valued for being instrumental in achieving desirable outcomes, but it has also long been argued that they are valuable for their own sake. Existing value measures of power and autonomy, however, fail to distinguish between intrinsic and instrumental value components. Power distance and autonomy are even considered to be cultural values, but we don’t know whether differences in such measures are rooted in differences in the instrumental value or differences in preferences. We propose a novel revealed preference approach that allows us to address this shortcoming by separately measuring the intrinsic value of power and the intrinsic value of autonomy. We can then apply this method to properly assess heterogeneity in such values within and across cultures. By combining our measures with other data, we will be able to study the importance of such preferences in explaining individual differences, such as occupational choices or expressed political views, as well as economic outcomes across countries, such as the level of decentralization in economic organizations. Finally, we will study how behavioral reactions to power interact with such preferences and organizational structure, in order to better understand how institutions can be efficiently designed when behavioral reactions to power are accounted for.
Summary
Power relations are an integral part of economic organizations, as well as political and social institutions. People exercise power over others – or are exposed to the power of others – in government, in firms, and even in families. People care deeply about power and autonomy, and attitudes towards them have important economic and societal consequences. Examples include such diverse matters as the willingness to delegate power to government, empire building in public organizations, or sorting into more or less autonomous jobs. Despite their importance, we have remarkably little knowledge about preferences for power and autonomy. Clearly, power and autonomy are valued for being instrumental in achieving desirable outcomes, but it has also long been argued that they are valuable for their own sake. Existing value measures of power and autonomy, however, fail to distinguish between intrinsic and instrumental value components. Power distance and autonomy are even considered to be cultural values, but we don’t know whether differences in such measures are rooted in differences in the instrumental value or differences in preferences. We propose a novel revealed preference approach that allows us to address this shortcoming by separately measuring the intrinsic value of power and the intrinsic value of autonomy. We can then apply this method to properly assess heterogeneity in such values within and across cultures. By combining our measures with other data, we will be able to study the importance of such preferences in explaining individual differences, such as occupational choices or expressed political views, as well as economic outcomes across countries, such as the level of decentralization in economic organizations. Finally, we will study how behavioral reactions to power interact with such preferences and organizational structure, in order to better understand how institutions can be efficiently designed when behavioral reactions to power are accounted for.
Max ERC Funding
1 492 785 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym COSMO@LHC
Project Cosmology at the CERN Large Hadron Collider
Researcher (PI) Geraldine Servant
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary The Large Hadron Collider (LHC), a 7 + 7 TeV proton-proton collider under completion at CERN, the European Laboratory for Particle Physics in Geneva, will take experiments into a new energy domain beyond the Standard Model of strong and electroweak interactions. As the LHC will unveil the mysteries of the electroweak symmetry breaking, this will also have far-reaching implications for cosmology. The aim of this project is to work out what we may learn about the Early Universe from discoveries at the LHC. This concerns in particular the two fundamental questions of the nature of the Dark Matter and the origin of the matter-antimatter asymmetry of the Universe. The LHC-Cosmology interplay has been a topic of active research in the last years. However, studies have essentially focussed on a single class of models: supersymmetry. The original and innovative directions of this project are: 1) To investigate dark matter particle physics models that have not been explored yet and confront theoretical predictions with existing and upcoming observational constraints. Measuring the properties of the dark matter will require a complementarity between the LHC searches and the other numerous ongoing dark matter experiments such as gamma ray telescopes, neutrino telescopes, cosmic positron detectors ... etc. 2) To work out the details of the electroweak phase transition in extensions of the Standard Model. One of the best-motivated mechanism for generating the baryon asymmetry of the universe relies on a first-order electroweak phase transition. Interestingly, this has strong implications for Gravity Wave physics. We will explore thoroughly how the planned gravity wave detector and space interferometer LISA, which turns out to be a completely independent window on the electroweak scale, could complement the information provided by the LHC. This project will also serve as a solid basis for future research at the Internatinal electron-positron Linear Collider.
Summary
The Large Hadron Collider (LHC), a 7 + 7 TeV proton-proton collider under completion at CERN, the European Laboratory for Particle Physics in Geneva, will take experiments into a new energy domain beyond the Standard Model of strong and electroweak interactions. As the LHC will unveil the mysteries of the electroweak symmetry breaking, this will also have far-reaching implications for cosmology. The aim of this project is to work out what we may learn about the Early Universe from discoveries at the LHC. This concerns in particular the two fundamental questions of the nature of the Dark Matter and the origin of the matter-antimatter asymmetry of the Universe. The LHC-Cosmology interplay has been a topic of active research in the last years. However, studies have essentially focussed on a single class of models: supersymmetry. The original and innovative directions of this project are: 1) To investigate dark matter particle physics models that have not been explored yet and confront theoretical predictions with existing and upcoming observational constraints. Measuring the properties of the dark matter will require a complementarity between the LHC searches and the other numerous ongoing dark matter experiments such as gamma ray telescopes, neutrino telescopes, cosmic positron detectors ... etc. 2) To work out the details of the electroweak phase transition in extensions of the Standard Model. One of the best-motivated mechanism for generating the baryon asymmetry of the universe relies on a first-order electroweak phase transition. Interestingly, this has strong implications for Gravity Wave physics. We will explore thoroughly how the planned gravity wave detector and space interferometer LISA, which turns out to be a completely independent window on the electroweak scale, could complement the information provided by the LHC. This project will also serve as a solid basis for future research at the Internatinal electron-positron Linear Collider.
Max ERC Funding
800 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30