Project acronym EXQFT
Project Exact Results in Quantum Field Theory
Researcher (PI) Zohar Komargodski
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary Quantum field theory (QFT) is a unified conceptual and mathematical framework that encompasses a veritable cornucopia of physical phenomena, including phase transitions, condensed matter systems, elementary particle physics, and (via the holographic principle) quantum gravity. QFT has become the standard language of modern theoretical physics.
Despite the fact that QFT is omnipresent in physics, we have virtually no tools to analyze from first principles many of the interesting systems that appear in nature. (For instance, Quantum Chromodynamics, non-Fermi liquids, and even boiling water.)
Our main goal in this proposal is to develop new tools that would allow us to make progress on this fundamental problem. To this end, we will employ two strategies.
First, we propose to study in detail systems that possess extra symmetries (and are hence simpler). For example, critical systems often admit the group of conformal transformations. Another example is given by theories with Bose-Fermi degeneracy (supersymmetric theories). We will explain how we think significant progress can be achieved in this area. Advances here will allow us to wield more analytic control over relatively simple QFTs and extract physical information from these models. Such information can be useful in many areas of physics and lead to new connections with mathematics. Second, we will study general properties of renormalization group flows. Renormalization group flows govern the dynamics of QFT and understanding their properties may lead to substantial developments. Very recent progress along these lines has already led to surprising new results about QFT and may have direct applications in several areas of physics. Much more can be achieved.
These two strategies are complementary and interwoven.
Summary
Quantum field theory (QFT) is a unified conceptual and mathematical framework that encompasses a veritable cornucopia of physical phenomena, including phase transitions, condensed matter systems, elementary particle physics, and (via the holographic principle) quantum gravity. QFT has become the standard language of modern theoretical physics.
Despite the fact that QFT is omnipresent in physics, we have virtually no tools to analyze from first principles many of the interesting systems that appear in nature. (For instance, Quantum Chromodynamics, non-Fermi liquids, and even boiling water.)
Our main goal in this proposal is to develop new tools that would allow us to make progress on this fundamental problem. To this end, we will employ two strategies.
First, we propose to study in detail systems that possess extra symmetries (and are hence simpler). For example, critical systems often admit the group of conformal transformations. Another example is given by theories with Bose-Fermi degeneracy (supersymmetric theories). We will explain how we think significant progress can be achieved in this area. Advances here will allow us to wield more analytic control over relatively simple QFTs and extract physical information from these models. Such information can be useful in many areas of physics and lead to new connections with mathematics. Second, we will study general properties of renormalization group flows. Renormalization group flows govern the dynamics of QFT and understanding their properties may lead to substantial developments. Very recent progress along these lines has already led to surprising new results about QFT and may have direct applications in several areas of physics. Much more can be achieved.
These two strategies are complementary and interwoven.
Max ERC Funding
1 158 692 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym MIDAS
Project Multidimensional Spectroscopy at the Attosecond frontier
Researcher (PI) Nirit Dudovich
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary The invention of multidimensional spectroscopy was a major leap in nuclear magnetic resonance. Comparable schemes in the optical regime have led to significant advances in our understanding of ultrafast dynamics in complex molecular systems. Currently, these multidimensional approaches are the most powerful and complete measurement schemes for resolving molecular dynamics on femtosecond time scales. The goal of this project is to advance the basic ideas and concepts of multi-dimensional spectroscopy to the forefront of ultrafast science – the attosecond (10-18 second) regime.
Attosecond science is a young field of research that has rapidly evolved over the past decade. Leading researchers in the field have opened a door into a new area of research that allows the observation of multi-electrons dynamics on their own natural time scale. Attosecond science lies at the heart of strong field light-matter interactions. These interactions can lead to the generation of attosecond duration XUV and energetic electron pulses, thereby providing researchers with the tools for studying a broad range of fundamental phenomena in Nature which evolve on an attosecond time scale. While an extensive theoretical effort has been invested in studying these phenomena, their experimental observation remains limited. The main limitation is set by the complexity of the interaction that offers numerous channels in which electronic dynamics can evolve.
The proposed research program aims at introducing multidimensional spectroscopy in the attosecond regime, thus revealing the underlying complex dynamics behind many attosecond scale phenomena. Integrating state of the art experimental schemes, supported by advanced theoretical analysis, will lead to the discoveries of new phenomena previously inaccessible in many experimental observations. The impact of the proposed research is beyond attosecond spectroscopy – opening new paths in resolving phenomena at the extreme nonlinear limit.
Summary
The invention of multidimensional spectroscopy was a major leap in nuclear magnetic resonance. Comparable schemes in the optical regime have led to significant advances in our understanding of ultrafast dynamics in complex molecular systems. Currently, these multidimensional approaches are the most powerful and complete measurement schemes for resolving molecular dynamics on femtosecond time scales. The goal of this project is to advance the basic ideas and concepts of multi-dimensional spectroscopy to the forefront of ultrafast science – the attosecond (10-18 second) regime.
Attosecond science is a young field of research that has rapidly evolved over the past decade. Leading researchers in the field have opened a door into a new area of research that allows the observation of multi-electrons dynamics on their own natural time scale. Attosecond science lies at the heart of strong field light-matter interactions. These interactions can lead to the generation of attosecond duration XUV and energetic electron pulses, thereby providing researchers with the tools for studying a broad range of fundamental phenomena in Nature which evolve on an attosecond time scale. While an extensive theoretical effort has been invested in studying these phenomena, their experimental observation remains limited. The main limitation is set by the complexity of the interaction that offers numerous channels in which electronic dynamics can evolve.
The proposed research program aims at introducing multidimensional spectroscopy in the attosecond regime, thus revealing the underlying complex dynamics behind many attosecond scale phenomena. Integrating state of the art experimental schemes, supported by advanced theoretical analysis, will lead to the discoveries of new phenomena previously inaccessible in many experimental observations. The impact of the proposed research is beyond attosecond spectroscopy – opening new paths in resolving phenomena at the extreme nonlinear limit.
Max ERC Funding
1 349 833 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym QUANTUMWALKS
Project Quantum walks in superconducting networks
Researcher (PI) Nadav Katz
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary "I propose to build a general purpose continuous quantum walk platform using superconducting devices (resonators, qubits and SQUIDS). This system will include up to 40 sites and will implement basic quantum simulation algorithms, generalized interferometry and explore the quantum-classical boundary for many-particle entangled systems.
Quantum walks (QW) are a novel scheme for quantum information processing. The core idea is to encode the problem into a network and propagate quantum particles within. The entanglement of the many-body state due to interference between sites of the network brings, at the appropriate time, to a desired answer/observable. Recent implementations with optical photons or trapped ions and atoms have brought this theoretical process to the forefront of fundamental and applied quantum engineering.
In parallel, superconducting devices are experiencing a renaissance due to modern understanding of materials, fundamental physics of superconductivity and fabrication techniques. The coherence times of superconducting qubits have improved by almost 5 (!) orders of magnitude over the past ten years. Recent developments include single microwave sources and detectors, quantum-limited amplifiers, heterodyne techniques for measurement and state tomography.
Building such a network involves significant challenges, both fundamental and technical. On the fundamental level I intend to improve coherence times of our devices by advanced material science characterization, simulation tools and rapid turn-around characterization. My group will build a ""quantum compiler"" system for designing new layouts, bridging abstract design to implementation. On the technical level we will implement a flip chip bias circuit to overcome site inhomogeneity and for evolving and measuring results. This will be an enabling system for a broad range of quantum information processing applications and fundamental experiments, with unprecedented computational power and flexibility."
Summary
"I propose to build a general purpose continuous quantum walk platform using superconducting devices (resonators, qubits and SQUIDS). This system will include up to 40 sites and will implement basic quantum simulation algorithms, generalized interferometry and explore the quantum-classical boundary for many-particle entangled systems.
Quantum walks (QW) are a novel scheme for quantum information processing. The core idea is to encode the problem into a network and propagate quantum particles within. The entanglement of the many-body state due to interference between sites of the network brings, at the appropriate time, to a desired answer/observable. Recent implementations with optical photons or trapped ions and atoms have brought this theoretical process to the forefront of fundamental and applied quantum engineering.
In parallel, superconducting devices are experiencing a renaissance due to modern understanding of materials, fundamental physics of superconductivity and fabrication techniques. The coherence times of superconducting qubits have improved by almost 5 (!) orders of magnitude over the past ten years. Recent developments include single microwave sources and detectors, quantum-limited amplifiers, heterodyne techniques for measurement and state tomography.
Building such a network involves significant challenges, both fundamental and technical. On the fundamental level I intend to improve coherence times of our devices by advanced material science characterization, simulation tools and rapid turn-around characterization. My group will build a ""quantum compiler"" system for designing new layouts, bridging abstract design to implementation. On the technical level we will implement a flip chip bias circuit to overcome site inhomogeneity and for evolving and measuring results. This will be an enabling system for a broad range of quantum information processing applications and fundamental experiments, with unprecedented computational power and flexibility."
Max ERC Funding
1 317 560 €
Duration
Start date: 2013-08-01, End date: 2018-07-31