Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 20SComplexity
Project An integrative approach to uncover the multilevel regulation of 20S proteasome degradation
Researcher (PI) Michal Sharon
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Summary
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by a ubiquitin-independent mechanism mediated by the core 20S proteasome itself. Although initially believed to be limited to rare exceptions, degradation by the 20S proteasome is now understood to have a wide range of substrates, many of which are key regulatory proteins. Despite its importance, little is known about the mechanisms that control 20S proteasomal degradation, unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome. Our overall aim is to reveal the multiple regulatory levels that coordinate the 20S proteasome degradation route.
To achieve this goal we will carry out a comprehensive research program characterizing three distinct levels of 20S proteasome regulation:
Intra-molecular regulation- Revealing the intrinsic molecular switch that activates the latent 20S proteasome.
Inter-molecular regulation- Identifying novel proteins that bind the 20S proteasome to regulate its activity and characterizing their mechanism of function.
Cellular regulatory networks- Unraveling the cellular cues and multiple pathways that influence 20S proteasome activity using a novel systematic and unbiased screening approach.
Our experimental strategy involves the combination of biochemical approaches with native mass spectrometry, cross-linking and fluorescence measurements, complemented by cell biology analyses and high-throughput screening. Such a multidisciplinary approach, integrating in vitro and in vivo findings, will likely provide the much needed knowledge on the 20S proteasome degradation route. When completed, we anticipate that this work will be part of a new paradigm – no longer perceiving the 20S proteasome mediated degradation as a simple and passive event but rather a tightly regulated and coordinated process.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym 2STEPPARKIN
Project A novel two-step model for neurodegeneration in Parkinson’s disease
Researcher (PI) Emi Nagoshi
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Summary
Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Max ERC Funding
1 518 960 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 3D-OA-HISTO
Project Development of 3D Histopathological Grading of Osteoarthritis
Researcher (PI) Simo Jaakko Saarakkala
Host Institution (HI) OULUN YLIOPISTO
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Summary
"Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 3DBIOLUNG
Project Bioengineering lung tissue using extracellular matrix based 3D bioprinting
Researcher (PI) Darcy WAGNER
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Summary
Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Max ERC Funding
1 499 975 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 3DCellPhase-
Project In situ Structural Analysis of Molecular Crowding and Phase Separation
Researcher (PI) Julia MAHAMID
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Summary
This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Max ERC Funding
1 228 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 3Ps
Project 3Ps
Plastic-Antibodies, Plasmonics and Photovoltaic-Cells: on-site screening of cancer biomarkers made possible
Researcher (PI) Maria Goreti Ferreira Sales
Host Institution (HI) INSTITUTO SUPERIOR DE ENGENHARIA DO PORTO
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Summary
This project presents a new concept for the detection, diagnosis and monitoring of cancer biomarker patterns in point-of-care. The device under development will make use of the selectivity of the plastic antibodies as sensing materials and the interference they will play on the normal operation of a photovoltaic cell.
Plastic antibodies will be designed by surface imprinting procedures. Self-assembled monolayer and molecular imprinting techniques will be merged in this process because they allow the self-assembly of nanostructured materials on a “bottom-up” nanofabrication approach. A dye-sensitized solar cell will be used as photovoltaic cell. It includes a liquid interface in the cell circuit, which allows the introduction of the sample (also in liquid phase) without disturbing the normal cell operation. Furthermore, it works well with rather low cost materials and requires mild and easy processing conditions. The cell will be equipped with plasmonic structures to enhance light absorption and cell efficiency.
The device under development will be easily operated by any clinician or patient. It will require ambient light and a regular multimeter. Eye detection will be also tried out.
Max ERC Funding
998 584 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31