Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 2-HIT
Project Genetic interaction networks: From C. elegans to human disease
Researcher (PI) Ben Lehner
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Summary
Most hereditary diseases in humans are genetically complex, resulting from combinations of mutations in multiple genes. However synthetic interactions between genes are very difficult to identify in population studies because of a lack of statistical power and we fundamentally do not understand how mutations interact to produce phenotypes. C. elegans is a unique animal in which genetic interactions can be rapidly identified in vivo using RNA interference, and we recently used this system to construct the first genetic interaction network for any animal, focused on signal transduction genes. The first objective of this proposal is to extend this work and map a comprehensive genetic interaction network for this model metazoan. This project will provide the first insights into the global properties of animal genetic interaction networks, and a comprehensive view of the functional relationships between genes in an animal. The second objective of the proposal is to use C. elegans to develop and validate experimentally integrated gene networks that connect genes to phenotypes and predict genetic interactions on a genome-wide scale. The methods that we develop and validate in C. elegans will then be applied to predict phenotypes and interactions for human genes. The final objective is to dissect the molecular mechanisms underlying genetic interactions, and to understand how these interactions evolve. The combined aim of these three objectives is to generate a framework for understanding and predicting how mutations interact to produce phenotypes, including in human disease.
Max ERC Funding
1 100 000 €
Duration
Start date: 2008-09-01, End date: 2014-04-30
Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ALLELECHOKER
Project DNA binding proteins for treatment of gain of function mutations
Researcher (PI) Enrico Maria Surace
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Zinc finger (ZF) and transcription activator-like effector (TALE) based technologies are been allowing the tailored design of “artificial” DNA-binding proteins targeted to specific and unique DNA genomic sequences. Coupling DNA binding proteins to effectors domains enables the constitution of DNA binding factors for genomic directed transcriptional modulation or targeted genomic editing. We have demonstrated that pairing a ZF DNA binding protein to the transcriptional repressor Kruppel-associated box enables in vivo, the transcriptional repression of one of the most abundantly expressed gene in mammals, the human rhodopsin gene (RHO). We propose to generate RHO DNA binding silencers (“AlleleChoker”), which inactivate RHO either by transcriptional repression or targeted genome modification, irrespectively to wild-type or mutated alleles (mutational-independent approach), and combine RHO endogenous silencing to RHO replacement (silencing-replacement strategy). With this strategy in principle a single bimodal bio-therapeutic will enable the correction of any photoreceptor disease associated with RHO mutation. Adeno-associated viral (AAV) vector-based delivery will be used for photoreceptors gene transfer. Specifically our objectives are: 1) Construction of transcriptional repressors and nucleases for RHO silencing. Characterization and comparison of RHO silencing mediated by transcriptional repressors (ZFR/ TALER) or nucleases (ZFN/ TALEN) to generate genomic directed inactivation by non-homologous end-joining (NHEJ), and refer these results to RNA interference (RNAi) targeted to RHO; 2) RHO silencing in photoreceptors. to determine genome-wide DNA binding specificity of silencers, chromatin modifications and expression profile on human retinal explants; 3) Tuning silencing and replacement. To determine the impact of gene silencing-replacement strategy on disease progression in animal models of autosomal dominant retinitis pigmentosa (adRP) associated to RHO mutations
Summary
Zinc finger (ZF) and transcription activator-like effector (TALE) based technologies are been allowing the tailored design of “artificial” DNA-binding proteins targeted to specific and unique DNA genomic sequences. Coupling DNA binding proteins to effectors domains enables the constitution of DNA binding factors for genomic directed transcriptional modulation or targeted genomic editing. We have demonstrated that pairing a ZF DNA binding protein to the transcriptional repressor Kruppel-associated box enables in vivo, the transcriptional repression of one of the most abundantly expressed gene in mammals, the human rhodopsin gene (RHO). We propose to generate RHO DNA binding silencers (“AlleleChoker”), which inactivate RHO either by transcriptional repression or targeted genome modification, irrespectively to wild-type or mutated alleles (mutational-independent approach), and combine RHO endogenous silencing to RHO replacement (silencing-replacement strategy). With this strategy in principle a single bimodal bio-therapeutic will enable the correction of any photoreceptor disease associated with RHO mutation. Adeno-associated viral (AAV) vector-based delivery will be used for photoreceptors gene transfer. Specifically our objectives are: 1) Construction of transcriptional repressors and nucleases for RHO silencing. Characterization and comparison of RHO silencing mediated by transcriptional repressors (ZFR/ TALER) or nucleases (ZFN/ TALEN) to generate genomic directed inactivation by non-homologous end-joining (NHEJ), and refer these results to RNA interference (RNAi) targeted to RHO; 2) RHO silencing in photoreceptors. to determine genome-wide DNA binding specificity of silencers, chromatin modifications and expression profile on human retinal explants; 3) Tuning silencing and replacement. To determine the impact of gene silencing-replacement strategy on disease progression in animal models of autosomal dominant retinitis pigmentosa (adRP) associated to RHO mutations
Max ERC Funding
1 354 840 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym AngioGenesHD
Project Epistasis analysis of angiogenes with high cellular definition
Researcher (PI) Rui Miguel Dos Santos Benedito
Host Institution (HI) CENTRO NACIONAL DE INVESTIGACIONESCARDIOVASCULARES CARLOS III (F.S.P.)
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Summary
Blood and lymphatic vessels have been the subject of intense investigation due to their important role in cancer development and in cardiovascular diseases. The significant advance in the methods used to modify and analyse gene function have allowed us to obtain a much better understanding of the molecular mechanisms involved in the regulation of the biology of blood vessels. However, there are two key aspects that significantly diminish our capacity to understand the function of gene networks and their intersections in vivo. One is the long time that is usually required to generate a given double mutant vertebrate tissue, and the other is the lack of single-cell genetic and phenotypic resolution. We have recently performed an in vivo comparative transcriptome analysis of highly angiogenic endothelial cells experiencing different VEGF and Notch signalling levels. These are two of the most important molecular mechanisms required for the adequate differentiation, proliferation and sprouting of endothelial cells. Using the information generated from this analysis, the overall aim of the proposed project is to characterize the vascular function of some of the previously identified genes and determine how they functionally interact with these two signalling pathways. We propose to use novel inducible genetic tools that will allow us to generate a spatially and temporally regulated fluorescent cell mosaic matrix for quantitative analysis. This will enable us to analyse with unprecedented speed and resolution the function of several different genes simultaneously, during vascular development, homeostasis or associated diseases. Understanding the genetic epistatic interactions that control the differentiation and behaviour of endothelial cells, in different contexts, and with high cellular definition, has the potential to unveil new mechanisms with high biological and therapeutic relevance.
Max ERC Funding
1 481 375 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym ANGIOPLACE
Project Expression and Methylation Status of Genes Regulating Placental Angiogenesis in Normal, Cloned, IVF and Monoparental Sheep Foetuses
Researcher (PI) Grazyna Ewa Ptak
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TERAMO
Call Details Starting Grant (StG), LS7, ERC-2007-StG
Summary Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Summary
Normal placental angiogenesis is critical for embryonic survival and development. Epigenetic modifications, such as methylation of CpG islands, regulate the expression and imprinting of genes. Epigenetic abnormalities have been observed in embryos from assisted reproductive technologies (ART), which could explain the poor placental vascularisation, embryonic/fetal death, and altered fetal growth in these pregnancies. Both cloned (somatic cell nuclear transfer, or SNCT) and monoparental (parthogenotes, only maternal genes; androgenotes, only paternal genes) embryos provide important models for studying defects in expression and methylation status/imprinting of genes regulating placental function. Our hypothesis is that placental vascular development is compromised during early pregnancy in embryos from ART, in part due to altered expression or imprinting/methylation status of specific genes regulating placental angiogenesis. We will evaluate fetal growth, placental vascular growth, and expression and epigenetic status of genes regulating placental angiogenesis during early pregnancy in 3 Specific Aims: (1) after natural mating; (2) after transfer of biparental embryos from in vitro fertilization, and SCNT; and (3) after transfer of parthenogenetic or androgenetic embryos. These studies will therefore contribute substantially to our understanding of the regulation of placental development and vascularisation during early pregnancy, and could pinpoint the mechanism contributing to embryonic loss and developmental abnormalities in foetuses from ART. Any or all of these observations will contribute to our understanding of and also our ability to successfully employ ART, which are becoming very wide spread and important in human medicine as well as in animal production.
Max ERC Funding
363 600 €
Duration
Start date: 2008-10-01, End date: 2012-06-30
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym BABE
Project Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants
Researcher (PI) Katerina SAM
Host Institution (HI) Biologicke centrum AV CR, v. v. i.
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Why is the world green? Because predators control herbivores, allowing plants to flourish. This >50 years old answer to the deceptively simple question remains controversial. After all, plants are also protected from herbivores physically and by secondary chemistry. My goal is to test novel aspects of the “green world hypothesis”: ● How the importance of top-down effects varies with forest diversity and productivity along a latitudinal gradient? ● How the key predators, birds, bats and ants, contribute to top-down effects individually and in synergy? I strive to understand this because: ● While there is evidence that predators reduce herbivore abundance and enhance plant growth, the importance of top-down control is poorly understood across a range of forests. ● The importance of key predatory groups, and their antagonistic and synergic interactions, have been rarely studied, despite their potential impact on ecosystem dynamics in changing world. I wish to achieve my goals by: ● Factorial manipulations of key insectivorous predators (birds, bats, ants) to measure their effects on lower trophic levels in forest understories and canopies, accessed by canopy cranes, along latitudinal gradient spanning 75o from Australia to Japan. ● Studying compensatory effects among predatory taxa on herbivore and plant performance. Why this has not been done before: ● Factorial experimental exclusion of predatory groups replicated on a large spatial scale is logistically difficult. ● Canopy crane network along a latitudinal gradient has only recently become available. I am in excellent position to succeed as I have experience with ● foodweb experiments along an elevation gradient in New Guinea rainforests, ● study of bird, bat and arthropod communities. If the project is successful, it will: ● Allow understanding the importance of predators from temperate to tropical forests. ● Establish a network of experimental sites along a network of canopy cranes open for follow-up research.
Summary
Why is the world green? Because predators control herbivores, allowing plants to flourish. This >50 years old answer to the deceptively simple question remains controversial. After all, plants are also protected from herbivores physically and by secondary chemistry. My goal is to test novel aspects of the “green world hypothesis”: ● How the importance of top-down effects varies with forest diversity and productivity along a latitudinal gradient? ● How the key predators, birds, bats and ants, contribute to top-down effects individually and in synergy? I strive to understand this because: ● While there is evidence that predators reduce herbivore abundance and enhance plant growth, the importance of top-down control is poorly understood across a range of forests. ● The importance of key predatory groups, and their antagonistic and synergic interactions, have been rarely studied, despite their potential impact on ecosystem dynamics in changing world. I wish to achieve my goals by: ● Factorial manipulations of key insectivorous predators (birds, bats, ants) to measure their effects on lower trophic levels in forest understories and canopies, accessed by canopy cranes, along latitudinal gradient spanning 75o from Australia to Japan. ● Studying compensatory effects among predatory taxa on herbivore and plant performance. Why this has not been done before: ● Factorial experimental exclusion of predatory groups replicated on a large spatial scale is logistically difficult. ● Canopy crane network along a latitudinal gradient has only recently become available. I am in excellent position to succeed as I have experience with ● foodweb experiments along an elevation gradient in New Guinea rainforests, ● study of bird, bat and arthropod communities. If the project is successful, it will: ● Allow understanding the importance of predators from temperate to tropical forests. ● Establish a network of experimental sites along a network of canopy cranes open for follow-up research.
Max ERC Funding
1 455 032 €
Duration
Start date: 2018-12-01, End date: 2023-11-30