Project acronym BIOCON
Project Biological origins of linguistic constraints
Researcher (PI) Juan Manuel Toro
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Summary
The linguistic capacity to express and comprehend an unlimited number of ideas when combining a limited number of elements has only been observed in humans. Nevertheless, research has not fully identified the components of language that make it uniquely human and that allow infants to grasp the complexity of linguistic structure in an apparently effortless manner. Research on comparative cognition suggests humans and other species share powerful learning mechanisms and basic perceptual abilities we use for language processing. But humans display remarkable linguistic abilities that other animals do not possess. Understanding the interplay between general mechanisms shared across species and more specialized ones dedicated to the speech signal is at the heart of current debates in human language acquisition. This is a highly relevant issue for researchers in the fields of Psychology, Linguistics, Biology, Philosophy and Cognitive Neuroscience. By conducting experiments across several populations (human adults and infants) and species (human and nonhuman animals), and using a wide array of experimental techniques, the present proposal hopes to shed some light on the origins of shared biological constraints that guide more specialized mechanisms in the search for linguistic structure. More specifically, we hope to understand how general perceptual and cognitive mechanisms likely present in other animals constrain the way humans tackle the task of language acquisition. Our hypothesis is that differences between humans and other species are not the result of humans being able to process increasingly complex structures that are the hallmark of language. Rather, differences might be due to humans and other animals focusing on different cues present in the signal to extract relevant information. This research will hint at what is uniquely human and what is shared across different animals species.
Max ERC Funding
1 305 973 €
Duration
Start date: 2013-01-01, End date: 2018-12-31
Project acronym BIOMOF
Project Biomineral-inspired growth and processing of metal-organic frameworks
Researcher (PI) Darren Bradshaw
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.
Summary
This ERC-StG proposal, BIOMOF, outlines a dual strategy for the growth and processing of porous metal-organic framework (MOF) materials, inspired by the interfacial interactions that characterise highly controlled biomineralisation processes. The aim is to prepare MOF (bio)-composite materials of hierarchical structure and multi-modal functionality to address key societal challenges in healthcare, catalysis and energy. In order for MOFs to reach their full potential, a transformative approach to their growth, and in particular their processability, is required since the insoluble macroscopic micron-sized crystals resulting from conventional syntheses are unsuitable for many applications. The BIOMOF project defines chemically flexible routes to MOFs under mild conditions, where the added value with respect to wide-ranging experimental procedures for the growth and processing of crystalline controllably nanoscale MOF materials with tunable structure and functionality that display significant porosity for wide-ranging applications is extremely high. Theme 1 exploits protein vesicles and abundant biopolymer matrices for the confined growth of soluble nanoscale MOFs for high-end biomedical applications such as cell imaging and targeted drug delivery, whereas theme 2 focuses on the cost-effective preparation of hierarchically porous MOF composites over several length scales, of relevance to bulk industrial applications such as sustainable catalysis, separations and gas-storage. This diverse yet complementary range of applications arising simply from the way the MOF is processed, coupled with the versatile structural and physical properties of MOFs themselves indicates strongly that the BIOMOF concept is a powerful convergent new approach to applied materials chemistry.
Max ERC Funding
1 492 970 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym Bionetworking
Project Bionetworking in Asia – A social science approach to international collaboration, informal exchanges, and responsible innovation in the life sciences
Researcher (PI) Margaret Elizabeth Sleeboom-Faulkner
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), SH2, ERC-2011-StG_20101124
Summary Bio-medical innovation makes a substantial contribution to Western societies and economies. But leading research organisations in the West are increasingly reliant on clinical research conducted beyond the West. Such initiatives are challenged by uncertainties about research quality and therapeutic practices in Asian countries. These only partly justified uncertainties are augmented by unfamiliar conditions. This study examines how to create responsible innovation in the life sciences by looking for ways to overcome existing obstacles to safe, just and ethical international science collaborations.
Building on observations of scientists, managers and patients and supported by Asian language expertise, biology background, and experience with science and technology policy-making, we examine the roles of regional differences and inequalities in the networks used for patient recruitment and international research agreements. Profit-motivated networks in the life sciences also occur underground and at an informal, unregulated level, which we call bionetworking. Bionetworking is a social entrepreneurial activity involving biomedical research, healthcare and patient networks that are maintained by taking advantage of regionally differences in levels of science and technology, healthcare, education and regulatory regimes.
Using novel social-science methods, the project studies two main themes. Theme 1 examines patient recruitment networks for experimental stem cell therapies and cooperation between research and health institutions involving exchanges of patients against other resources. Theme 2 maps and analyses exchanges of biomaterials of human derivation, and forms of ‘ownership’ rights, benefits and burdens associated with their donation, possession, maintenance, and application. Integral analysis of the project nodes incorporates an analysis of public health policy and patient preference in relation to Responsible innovation, Good governance and Global assemblages.
Summary
Bio-medical innovation makes a substantial contribution to Western societies and economies. But leading research organisations in the West are increasingly reliant on clinical research conducted beyond the West. Such initiatives are challenged by uncertainties about research quality and therapeutic practices in Asian countries. These only partly justified uncertainties are augmented by unfamiliar conditions. This study examines how to create responsible innovation in the life sciences by looking for ways to overcome existing obstacles to safe, just and ethical international science collaborations.
Building on observations of scientists, managers and patients and supported by Asian language expertise, biology background, and experience with science and technology policy-making, we examine the roles of regional differences and inequalities in the networks used for patient recruitment and international research agreements. Profit-motivated networks in the life sciences also occur underground and at an informal, unregulated level, which we call bionetworking. Bionetworking is a social entrepreneurial activity involving biomedical research, healthcare and patient networks that are maintained by taking advantage of regionally differences in levels of science and technology, healthcare, education and regulatory regimes.
Using novel social-science methods, the project studies two main themes. Theme 1 examines patient recruitment networks for experimental stem cell therapies and cooperation between research and health institutions involving exchanges of patients against other resources. Theme 2 maps and analyses exchanges of biomaterials of human derivation, and forms of ‘ownership’ rights, benefits and burdens associated with their donation, possession, maintenance, and application. Integral analysis of the project nodes incorporates an analysis of public health policy and patient preference in relation to Responsible innovation, Good governance and Global assemblages.
Max ERC Funding
1 497 711 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym BIOPROPERTY
Project Biomedical Research and the Future of Property Rights
Researcher (PI) Javier Lezaun Barreras
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This research project investigates the dynamics of private and public property in contemporary biomedical research. It will develop an analytical framework combining insights from science and technology studies, economic sociology, and legal and political philosophy, and pursues a social scientific investigation of the evolution of intellectual property rights in three fields of bioscientific research: 1) the use of transgenic research mice; 2) the legal status of totipotent and pluripotent stem cell lines; and 3) modes of collaboration for research and development on neglected diseases. These three domains, and their attendant modes of appropriation, will be compared across three general research themes: a) the production of public scientific goods; b) categories of appropriation; and c) the moral economy of research. The project rests on close observation of research practices in these three domains. The BioProperty research programme will track the trajectories of property rights and property objects in each of the three fields of biomedical research.
Summary
This research project investigates the dynamics of private and public property in contemporary biomedical research. It will develop an analytical framework combining insights from science and technology studies, economic sociology, and legal and political philosophy, and pursues a social scientific investigation of the evolution of intellectual property rights in three fields of bioscientific research: 1) the use of transgenic research mice; 2) the legal status of totipotent and pluripotent stem cell lines; and 3) modes of collaboration for research and development on neglected diseases. These three domains, and their attendant modes of appropriation, will be compared across three general research themes: a) the production of public scientific goods; b) categories of appropriation; and c) the moral economy of research. The project rests on close observation of research practices in these three domains. The BioProperty research programme will track the trajectories of property rights and property objects in each of the three fields of biomedical research.
Max ERC Funding
887 602 €
Duration
Start date: 2011-03-01, End date: 2014-12-31
Project acronym BIOSYNCEN
Project Dissection of centromeric chromatin and components: A biosynthetic approach
Researcher (PI) Patrick Heun
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary The centromere is one of the most important chromosomal elements. It is required for proper chromosome segregation in mitosis and meiosis and readily recognizable as the primary constriction of mitotic chromosomes. Proper centromere function is essential to ensure genome stability; therefore understanding centromere identity is directly relevant to cancer biology and gene therapy. How centromeres are established and maintained is however still an open question in the field. In most organisms this appears to be regulated by an epigenetic mechanism. The key candidate for such an epigenetic mark is CENH3 (CENP-A in mammals, CID in Drosophila), a centromere-specific histone H3 variant that is essential for centromere function and exclusively found in the nucleosomes of centromeric chromatin. Using a biosynthetic approach of force-targeting CENH3 in Drosophila to non-centromeric DNA, we were able to induce centromere function and demonstrate that CENH3 is sufficient to determine centromere identity. Here we propose to move this experimental setup across evolutionary boundaries into human cells to develop improved human artificial chromosomes (HACs). We will make further use of this unique setup to dissect the function of targeted CENH3 both in Drosophila and human cells. Contributing centromeric components and histone modifications of centromeric chromatin will be characterized in detail by mass spectroscopy in Drosophila. Finally we are proposing to develop a technique that allows high-resolution mapping of proteins on repetitive DNA to help further characterizing known and novel centromere components. This will be achieved by combining two independently established techniques: DNA methylation and DNA fiber combing. This ambitious proposal will significantly advance our understanding of how centromeres are determined and help the development of improved HACs for therapeutic applications in the future.
Summary
The centromere is one of the most important chromosomal elements. It is required for proper chromosome segregation in mitosis and meiosis and readily recognizable as the primary constriction of mitotic chromosomes. Proper centromere function is essential to ensure genome stability; therefore understanding centromere identity is directly relevant to cancer biology and gene therapy. How centromeres are established and maintained is however still an open question in the field. In most organisms this appears to be regulated by an epigenetic mechanism. The key candidate for such an epigenetic mark is CENH3 (CENP-A in mammals, CID in Drosophila), a centromere-specific histone H3 variant that is essential for centromere function and exclusively found in the nucleosomes of centromeric chromatin. Using a biosynthetic approach of force-targeting CENH3 in Drosophila to non-centromeric DNA, we were able to induce centromere function and demonstrate that CENH3 is sufficient to determine centromere identity. Here we propose to move this experimental setup across evolutionary boundaries into human cells to develop improved human artificial chromosomes (HACs). We will make further use of this unique setup to dissect the function of targeted CENH3 both in Drosophila and human cells. Contributing centromeric components and histone modifications of centromeric chromatin will be characterized in detail by mass spectroscopy in Drosophila. Finally we are proposing to develop a technique that allows high-resolution mapping of proteins on repetitive DNA to help further characterizing known and novel centromere components. This will be achieved by combining two independently established techniques: DNA methylation and DNA fiber combing. This ambitious proposal will significantly advance our understanding of how centromeres are determined and help the development of improved HACs for therapeutic applications in the future.
Max ERC Funding
1 755 960 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym BLOODCELLSCROSSTALK
Project The Crosstalk Between Red And White Blood Cells: The Case Of Fish
Researcher (PI) Maria del Mar Ortega-Villaizan Romo
Host Institution (HI) UNIVERSIDAD MIGUEL HERNANDEZ DE ELCHE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Summary
Fish are the phylogenetically oldest vertebrate group with an immune system with clear similarities to the immune system of mammals. However, it is an actual matter of fact that the current knowledge of the fish immune system seems to lack the key piece to complete the puzzle.
In 1953 Nelson described a new role of human red blood cells (RBCs) which would go beyond the simple transport of O2 to the tissues. This new role, involved in the defence against microbes, described the antibody and complement-dependent binding of microbial immune complexes to RBCs. Regardless of the importance of this finding in the field of microbial infection, this phenomenon has been poorly evaluated. Just recently, a set of biological processes relevant to immunity have been described in the RBCs of a diverse group of organisms, which include: pathogen recognition, pathogen binding and clearance and cytokines production. Furthermore, it has been demonstrated that nucleated erythrocytes from fish and avian species develop specific responses to different pathogen associated molecular patterns and produce soluble factors that modulate leukocyte activity.
In the light of these pieces of evidences, and in an attempt to improve the knowledge of the immune mechanism(s) responsible for fish protection against viral infections, we raised the question: could nucleated fish erythrocytes be the key mediators of the antiviral responses? To answer this question we decided to focus our project on the evaluation of the crosstalk between red and white blood cells in the scenario of fish viral infections and prophylaxis. For that a working model composed of the rainbow trout and the viral haemorrhagic septicaemia virus (VHSV) was chosen, being the objectives of the project to evaluate: i) the implication trout RBCs (tRBCs) in the clearance of VHSV, and ii) the involvement of tRBCs in the blood transportation of the glycoprotein G of VHSV (GVHSV), the antigen encoded by the DNA vaccine.
Max ERC Funding
1 823 250 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym BLUELEAF
Project The adaptive advantages, evolution and development of iridescence in leaves
Researcher (PI) Heather Whitney
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Summary
Iridescence is a form of structural colour which changes hue according to the angle from which it is viewed. Blue iridescence caused by multilayers has been described on the leaves of taxonomically diverse species such as the lycophyte Selaginella uncinata and the angiosperm Begonia pavonina. While much is known about the role of leaf pigment colour, the adaptive role of leaf iridescence is unknown. Hypotheses have been put forward including 1) iridescence acts as disruptive camouflage against herbivores 2) it enhances light sensing and capture in low light conditions 3) it is a photoprotective mechanism to protect shade-adapted plants against high light levels. These hypotheses are not mutually exclusive: each function may be of varying importance in different environments. To understand any one function, we need a interdisciplinary approach considering all three potential functions and their interactions. The objective of my research would be to test these hypotheses, using animal behavioural and plant physiological methods, to determine the functions of leaf iridescence and how the plant has adapted to the reflection of developmentally vital wavelengths. Use of molecular and bioinformatics methods will elucidate the genes that control the production of this potentially multifunctional optical phenomenon. This research will provide a pioneering study into the generation, developmental impact and adaptive significance of iridescence in leaves. It would also answer questions at the frontiers of several fields including those of plant evolution, insect vision, methods of camouflage, the generation and role of animal iridescence, and could also potentially inspire synthetic biomimetic applications.
Max ERC Funding
1 118 378 €
Duration
Start date: 2011-01-01, End date: 2016-07-31
Project acronym BODILY SELF
Project Embodied Minds and Mentalised Bodies
Researcher (PI) Aikaterini (Katerina) Fotopoulou
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH4, ERC-2012-StG_20111124
Summary How does our acting, sensing and feeling body shape our mind? The mechanisms by which bodily signals are integrated and re-represented in the brain, as well as the relation between these processes and body awareness remain unknown. To this date, neuropsychological disorders of body awareness represent an indispensible window of insight into phenomenally rich states of body unawareness. Unfortunately, only few experimental studies have been conducted in these disorders. The BODILY SELF will aim to apply methods from cognitive neuroscience to experimental and neuroimaging studies in healthy volunteers, as well as in patients with neuropsychological disorders of body awareness. A first subproject will assess which combination of deficits in sensorimotor afferent and efferent signals leads to unawareness. The second subproject will attempt to use experimental, psychophysical interventions to treat unawareness and measure the corresponding, dynamic changes in the brain. The third subproject will assess how some bodily signals and their integration is influenced by social mechanisms. The planned studies surpass the existing state-of-the-art in the relevant fields in five ground-breaking ways, ultimately allowing us to (1) acquire an unprecedented ‘on-line’ experimental ‘handle’ over dynamic changes in body awareness; (2) restore awareness and improve health outcomes (3) understand the brain’s potential for reorganisation and plasticity in relation to higher-order processes such as awareness; (4) understand how our own body experience is modulated by our interactions and relations with others; (5) address in a genuinely interdisciplinary manner some of the oldest questions in psychology, philosophy and medicine; how embodiment influences the mind, how others influence the self and how mind–body processes affect healing.
Summary
How does our acting, sensing and feeling body shape our mind? The mechanisms by which bodily signals are integrated and re-represented in the brain, as well as the relation between these processes and body awareness remain unknown. To this date, neuropsychological disorders of body awareness represent an indispensible window of insight into phenomenally rich states of body unawareness. Unfortunately, only few experimental studies have been conducted in these disorders. The BODILY SELF will aim to apply methods from cognitive neuroscience to experimental and neuroimaging studies in healthy volunteers, as well as in patients with neuropsychological disorders of body awareness. A first subproject will assess which combination of deficits in sensorimotor afferent and efferent signals leads to unawareness. The second subproject will attempt to use experimental, psychophysical interventions to treat unawareness and measure the corresponding, dynamic changes in the brain. The third subproject will assess how some bodily signals and their integration is influenced by social mechanisms. The planned studies surpass the existing state-of-the-art in the relevant fields in five ground-breaking ways, ultimately allowing us to (1) acquire an unprecedented ‘on-line’ experimental ‘handle’ over dynamic changes in body awareness; (2) restore awareness and improve health outcomes (3) understand the brain’s potential for reorganisation and plasticity in relation to higher-order processes such as awareness; (4) understand how our own body experience is modulated by our interactions and relations with others; (5) address in a genuinely interdisciplinary manner some of the oldest questions in psychology, philosophy and medicine; how embodiment influences the mind, how others influence the self and how mind–body processes affect healing.
Max ERC Funding
1 453 284 €
Duration
Start date: 2013-04-01, End date: 2018-09-30
Project acronym BODYBUILDING
Project Building body representations: An investigation of the formation and maintenance of body representations
Researcher (PI) Matthew Ryan Longo
Host Institution (HI) BIRKBECK COLLEGE - UNIVERSITY OF LONDON
Call Details Starting Grant (StG), SH4, ERC-2013-StG
Summary "The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Summary
"The body is ubiquitous in perceptual experience and is central to our sense of self and personal identity. Disordered body representations are central to several serious psychiatric and neurological disorders. Thus, identifying factors which contribute to the formation and maintenance of body representations is crucial for understanding how body representation goes awry in disease, and how it might be corrected by potential novel therapeutic interventions. Several types of sensory signals provide information about the body, making the body the multisensory object, par excellence. Little is known, however, about how information from somatosensation and from vision is integrated to construct the rich body representations we all experience. This project fills this gap in current understanding by determining how the brain builds body representations (BODYBUILDING). A hierarchical model of body representation is proposed, providing a novel theoretical framework for understanding the diversity of body representations and how they interact. The key motivating hypothesis is that body representation is determined by the dialectic between two major cognitive processes. First, from the bottom-up, somatosensation represents the body surface as a mosaic of discrete receptive fields, which become progressively agglomerated into larger and larger units of organisation, a process I call fusion. Second, from the top-down, vision starts out depicting the body as an undifferentiated whole, which is progressively broken into smaller parts, a process I call segmentation. Thus, body representation operates from the bottom-up as a process of fusion of primitive elements into larger complexes, as well as from the top-down as a process of segmentation of an initially undifferentiated whole into more basic parts. This project uses a combination of psychophysical, electrophysiological, and neuroimaging methods to provide fundamental insight into how we come to represent our body."
Max ERC Funding
1 497 715 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BP-CarDiO
Project Investigating the therapeutic potential of manipulating the IGF-IGFBP1 axis in the prevention and treatment of cardiovascular disease, diabetes and obesity
Researcher (PI) Stephen Bentley Wheatcroft
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), LS4, ERC-2012-StG_20111109
Summary More than 30 million people are living with diabetes in the EU, with a prevalence expected to grow to over 10% of the adult population by the year 2030. Type 2 diabetes is a major cause of cardiovascular disease related death and disability, substantially increasing the risk of myocardial infarction, stroke and peripheral arterial disease. Recent landmark trials, showing that intensive glucose control does not improve cardiovascular outcomes and may increase mortality in some circumstances, provide a compelling rationale for intense research aimed at developing novel therapeutic strategies. Type 2 diabetes is underpinned by resistance to the effects of insulin, which I have shown in endothelial cells causes reduced bioavailability of the anti-atherosclerotic molecule nitric oxide and leads to accelerated atherosclerosis. The cellular effects of insulin are mirrored by insulin-like growth factor factor-1, the bioavailability of which at its receptor is in turn is regulated by a family of high affinity binding proteins (IGFBP). Epidemiological studies demonstrate and inverse association between one of these binding proteins, IGFBP1, and diabetes-related cardiovascular risk. I have recently demonstrated that IGFBP1 when expressed in mice can ameliorate insulin resistance, obesity and atherosclerosis. In endothelial cells, I showed that IGFBP1 upregulates the production of nitric oxide indepenedently of IGF. These findings suggest that IGFBP1 may be a ‘protective’ endogenous protein and that increasing circulating levels may be a therapeutic strategy to prevent development of diabetes and cardiovascular disease. In this proposal I will address this hypothesis by employing state of the art studies in cells and novel gene modified mice to unravel the molecular basis of the protective effects of IGFBP1 and to investigate the possibility of exploiting the IGF-IGFBP axis to prevent cardiovascular disease in the setting of diabetes and obesity.
Summary
More than 30 million people are living with diabetes in the EU, with a prevalence expected to grow to over 10% of the adult population by the year 2030. Type 2 diabetes is a major cause of cardiovascular disease related death and disability, substantially increasing the risk of myocardial infarction, stroke and peripheral arterial disease. Recent landmark trials, showing that intensive glucose control does not improve cardiovascular outcomes and may increase mortality in some circumstances, provide a compelling rationale for intense research aimed at developing novel therapeutic strategies. Type 2 diabetes is underpinned by resistance to the effects of insulin, which I have shown in endothelial cells causes reduced bioavailability of the anti-atherosclerotic molecule nitric oxide and leads to accelerated atherosclerosis. The cellular effects of insulin are mirrored by insulin-like growth factor factor-1, the bioavailability of which at its receptor is in turn is regulated by a family of high affinity binding proteins (IGFBP). Epidemiological studies demonstrate and inverse association between one of these binding proteins, IGFBP1, and diabetes-related cardiovascular risk. I have recently demonstrated that IGFBP1 when expressed in mice can ameliorate insulin resistance, obesity and atherosclerosis. In endothelial cells, I showed that IGFBP1 upregulates the production of nitric oxide indepenedently of IGF. These findings suggest that IGFBP1 may be a ‘protective’ endogenous protein and that increasing circulating levels may be a therapeutic strategy to prevent development of diabetes and cardiovascular disease. In this proposal I will address this hypothesis by employing state of the art studies in cells and novel gene modified mice to unravel the molecular basis of the protective effects of IGFBP1 and to investigate the possibility of exploiting the IGF-IGFBP axis to prevent cardiovascular disease in the setting of diabetes and obesity.
Max ERC Funding
1 493 543 €
Duration
Start date: 2013-01-01, End date: 2017-12-31