Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym AORVM
Project The Effects of Aging on Object Representation in Visual Working Memory
Researcher (PI) James Robert Brockmole
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), SH3, ERC-2007-StG
Summary One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Summary
One’s ability to remember visual material such as objects, faces, and spatial locations over a short period of time declines with age. The proposed research will examine whether these deficits are explained by a reduction in visual working memory (VWM) capacity, or an impairment in one’s ability to maintain, or ‘bind’ appropriate associations among pieces of related information. In this project successful binding is operationally defined as the proper recall or recognition of objects that are defined by the conjunction of multiple visual features. While tests of long-term memory have demonstrated that, despite preserved memory for isolated features, older adults have more difficulty remembering conjunctions of features, no research has yet investigated analogous age related binding deficits in VWM. This is a critical oversight because, given the current state of the science, it is unknown whether these deficits are specific to the long-term memory system, or if they originate in VWM. The project interweaves three strands of research that each investigate whether older adults have more difficulty creating, maintaining, and updating bound multi-feature object representations than younger adults. This theoretical program of enquiry will provide insight into the cognitive architecture of VWM and how this system changes with age, and its outcomes will have wide ranging multi-disciplinary applications in applied theory and intervention techniques that may reduce the adverse consequences of aging on memory.
Max ERC Funding
500 000 €
Duration
Start date: 2008-09-01, End date: 2011-08-31
Project acronym AVIANEGG
Project Evolutionary genetics in a ‘classical’ avian study system by high throughput transcriptome sequencing and SNP genotyping
Researcher (PI) Jon Slate
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), LS5, ERC-2007-StG
Summary Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Summary
Long-term studies of free-living vertebrate populations have proved a rich resource for understanding evolutionary and ecological processes, because individuals’ life histories can be measured by tracking them from birth/hatching through to death. In recent years the ‘animal model’ has been applied to pedigreed long-term study populations with great success, dramatically advancing our understanding of quantitative genetic parameters such as heritabilities, genetic correlations and plasticities of traits that are relevant to microevolutionary responses to environmental change. Unfortunately, quantitative genetic approaches have one major drawback – they cannot identify the actual genes responsible for genetic variation. Therefore, it is impossible to link evolutionary responses to a changing environment to molecular genetic variation, making our picture of the process incomplete. Many of the best long-term studies have been conducted in passerine birds. Unfortunately genomics resources are only available for two model avian species, and are absent for bird species that are studied in the wild. I will fill this gap by exploiting recent advances in genomics technology to sequence the entire transcriptome of the longest running study of wild birds – the great tit population in Wytham Woods, Oxford. Having identified most of the sequence variation in the great tit transcriptome, I will then genotype all birds for whom phenotype records and blood samples are available This will be, by far, the largest phenotype-genotype dataset of any free-living vertebrate population. I will then use gene mapping techniques to identify genes and genomic regions responsible for variation in a number of key traits such as lifetime recruitment, clutch size and breeding/laying date. This will result in a greater understanding, at the molecular level, how microevolutionary change can arise (or be constrained).
Max ERC Funding
1 560 770 €
Duration
Start date: 2008-10-01, End date: 2014-06-30
Project acronym BBSG
Project Bosnian Bones, Spanish Ghosts: 'Transitional Justice' and the Legal Shaping of Memory after Two Modern Conflicts
Researcher (PI) Sarah Lynn Wastell (Born Haller)
Host Institution (HI) GOLDSMITHS' COLLEGE
Call Details Starting Grant (StG), SH2, ERC-2009-StG
Summary The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Summary
The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Max ERC Funding
1 420 000 €
Duration
Start date: 2009-09-01, End date: 2013-08-31
Project acronym CHROMOSOME STABILITY
Project Coordination of DNA replication and DNA repair at single-forks: the role of the Smc5-Smc6 complex in replication fork stalling and resumption
Researcher (PI) Luis Fernando Aragon Alcaide
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary DNA replication represents a dangerous moment in the life of the cell as endogenous and exogenous events challenge genome integrity by interfering with the progression, stability and restart of the replication fork. Failure to protect stalled forks or to process the replication fork appropriately contribute to the pathological mechanisms giving rise to cancer, therefore an understanding of the intricate mechanisms that ensure fork integrity can provide targets for new chemotherapeutic assays. Smc5-Smc6 is a multi-subunit complex with a poorly understood function in DNA replication and repair. One of its subunits, Nse2, is able to promote the addition of a small ubiquitin-like protein modifier (SUMO) to specific target proteins. Recent work has revealed that the Smc5-Smc6 complex is required for the progression of replication forks through damaged DNA and is recruited de novo to forks that undergo collapse. In addition, Smc5-Smc6 mediate repair of DNA breaks by homologous recombination between sister-chromatids. Thus, Smc5-Smc6 is anticipated to promote recombinational repair at stalled/collapsed replication forks. My laboratory proposes to develop molecular techniques to study replication at the level of single replication forks. We will employ these assays to identify and dissect the function of factors involved in replication fork stability and repair. We will place an emphasis on the study of the Smc5-Smc6 complex in these processes because of its potential roles in recombination-dependent fork repair and restart. We also propose to identify novel Nse2 substrates involved in DNA repair using yeast model systems. Specifically, we will address the following points: (1) Development of assays for analysis of factors involved in stabilisation, collapse and re-start of single-forks, (2) Analysis of the roles of Smc5-Smc6 in fork biology using developed techniques, (3) Isolation and functional analysis of novel Nse2 substrates.
Summary
DNA replication represents a dangerous moment in the life of the cell as endogenous and exogenous events challenge genome integrity by interfering with the progression, stability and restart of the replication fork. Failure to protect stalled forks or to process the replication fork appropriately contribute to the pathological mechanisms giving rise to cancer, therefore an understanding of the intricate mechanisms that ensure fork integrity can provide targets for new chemotherapeutic assays. Smc5-Smc6 is a multi-subunit complex with a poorly understood function in DNA replication and repair. One of its subunits, Nse2, is able to promote the addition of a small ubiquitin-like protein modifier (SUMO) to specific target proteins. Recent work has revealed that the Smc5-Smc6 complex is required for the progression of replication forks through damaged DNA and is recruited de novo to forks that undergo collapse. In addition, Smc5-Smc6 mediate repair of DNA breaks by homologous recombination between sister-chromatids. Thus, Smc5-Smc6 is anticipated to promote recombinational repair at stalled/collapsed replication forks. My laboratory proposes to develop molecular techniques to study replication at the level of single replication forks. We will employ these assays to identify and dissect the function of factors involved in replication fork stability and repair. We will place an emphasis on the study of the Smc5-Smc6 complex in these processes because of its potential roles in recombination-dependent fork repair and restart. We also propose to identify novel Nse2 substrates involved in DNA repair using yeast model systems. Specifically, we will address the following points: (1) Development of assays for analysis of factors involved in stabilisation, collapse and re-start of single-forks, (2) Analysis of the roles of Smc5-Smc6 in fork biology using developed techniques, (3) Isolation and functional analysis of novel Nse2 substrates.
Max ERC Funding
893 396 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CLIP
Project Mapping functional protein-RNA interactions to identify new targets for oligonucleotide-based therapy
Researcher (PI) Jernej Ule
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.
Summary
An important question of modern neurobiology is how neurons regulate synaptic function in response to excitation. In particular, the roles of alternative pre-mRNA splicing and mRNA translation regulation in this response are poorly understood. We will study the RNA-binding proteins (RBPs) that control these post-transcriptional changes using a UV crosslinking-based purification method (CLIP) and ultra-high throughput sequencing. Computational analysis of the resulting data will define the sequence and structural features of RNA motifs recognized by each RBP. Splicing microarrays and translation reporter assays will then allow us to examine the regulatory functions of RBPs and RNA motifs. By integrating the biochemical and functional datasets, we will relate the position of RNA motifs to the activity of bound RBPs, and predict the interactions that act as central nodes in the regulatory network. The physiological role of these core RBP-RNA interactions will then be tested using antisense RNAs. Together, these projects will provide insights to the regulatory mechanisms underlying neuronal activity-dependent changes, and provide new opportunities for future treatments of neurodegenerative disorders.
Max ERC Funding
900 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym CONSERVREGCIRCUITRY
Project Conservation and Divergence of Tissue-Specific Transcriptional Regulation
Researcher (PI) Duncan Odom
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Vertebrates contain hundreds of different cell types which maintain phenotypic identity by a combination of epigenetic programming and genomic regulation. Systems biology approaches are now used in a number of laboratories to determine how transcription factors and chromatin marks pattern the human genome. Despite high conservation of the cellular and molecular function of many mammalian transcription factors, our recent experiments in matched mouse and human tissues indicates that most transcription factor binding events to DNA are very poorly conserved. A hypothesis that could account for this apparent divergence is that the larger regional pattern of transcription factor binding may be conserved. To test this, (1) we are characterizing the global transcriptional profile, chromatin state, and complete genomic occupancy of a set of tissue-specific transcription factors in hepatocytes of strategically chosen mammals; (2) to further identify the precise mechanistic contribution of cis and trans effects, we are comparing transcription factor binding at homologous regions of human and mouse DNA in a mouse line that carries human chromosome 21. Together, these projects will provide insight into the general principles of how transcriptional networks are evolutionarily conserved to regulate cell fate specification and function using a clinically important cell type as a model.
Summary
Vertebrates contain hundreds of different cell types which maintain phenotypic identity by a combination of epigenetic programming and genomic regulation. Systems biology approaches are now used in a number of laboratories to determine how transcription factors and chromatin marks pattern the human genome. Despite high conservation of the cellular and molecular function of many mammalian transcription factors, our recent experiments in matched mouse and human tissues indicates that most transcription factor binding events to DNA are very poorly conserved. A hypothesis that could account for this apparent divergence is that the larger regional pattern of transcription factor binding may be conserved. To test this, (1) we are characterizing the global transcriptional profile, chromatin state, and complete genomic occupancy of a set of tissue-specific transcription factors in hepatocytes of strategically chosen mammals; (2) to further identify the precise mechanistic contribution of cis and trans effects, we are comparing transcription factor binding at homologous regions of human and mouse DNA in a mouse line that carries human chromosome 21. Together, these projects will provide insight into the general principles of how transcriptional networks are evolutionarily conserved to regulate cell fate specification and function using a clinically important cell type as a model.
Max ERC Funding
960 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym DCFM
Project Default and Collateral in Financial Markets
Researcher (PI) Ioannis Vailakis
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary The main objective of this project is to research the economic implications of default and collateral in financial markets. It is motivated from the observation that much of the lending in modern economies is secured by some form of collateral and by the empirical fact that modern economies experience a substantial amount of default and bankruptcy. From a theoretical perspective, the research aims to explore new ways of modelling default and collateral and employ them to evaluate the impact of default and collateral on market outcomes. From a policy recommendation perspective, the research aims to develop models with testable implications that can be used by practitioners to discuss the consequences of a wide range of policies. In particular, to explore which kind of regulation procedures should be implemented in order to lower the risk of default and at the same time not to reduce too much risk-sharing. The agenda includes two research directions. The first research direction will focus on the implications of default and collateral in economies with bounded rational agents. Our aim is to understand how default and collateral affect market outcomes in environments where agents are allowed to have very divergent and therefore possibly incorrect beliefs about endogenous economic variables like future prices and delivery rates. The second research direction will focus on the implications of default and collateral in economies with an open ended horizon. Our aim is to investigate endogenous debt constraints that are compatible with equilibrium and simultaneously allow for as much risk sharing as possible.
Summary
The main objective of this project is to research the economic implications of default and collateral in financial markets. It is motivated from the observation that much of the lending in modern economies is secured by some form of collateral and by the empirical fact that modern economies experience a substantial amount of default and bankruptcy. From a theoretical perspective, the research aims to explore new ways of modelling default and collateral and employ them to evaluate the impact of default and collateral on market outcomes. From a policy recommendation perspective, the research aims to develop models with testable implications that can be used by practitioners to discuss the consequences of a wide range of policies. In particular, to explore which kind of regulation procedures should be implemented in order to lower the risk of default and at the same time not to reduce too much risk-sharing. The agenda includes two research directions. The first research direction will focus on the implications of default and collateral in economies with bounded rational agents. Our aim is to understand how default and collateral affect market outcomes in environments where agents are allowed to have very divergent and therefore possibly incorrect beliefs about endogenous economic variables like future prices and delivery rates. The second research direction will focus on the implications of default and collateral in economies with an open ended horizon. Our aim is to investigate endogenous debt constraints that are compatible with equilibrium and simultaneously allow for as much risk sharing as possible.
Max ERC Funding
156 538 €
Duration
Start date: 2010-06-01, End date: 2012-06-30