Project acronym 3D-FIREFLUC
Project Taming the particle transport in magnetized plasmas via perturbative fields
Researcher (PI) Eleonora VIEZZER
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Summary
Wave-particle interactions are ubiquitous in nature and play a fundamental role in astrophysical and fusion plasmas. In solar plasmas, magnetohydrodynamic (MHD) fluctuations are thought to be responsible for the heating of the solar corona and the generation of the solar wind. In magnetically confined fusion (MCF) devices, enhanced particle transport induced by MHD fluctuations can deteriorate the plasma confinement, and also endanger the device integrity. MCF devices are an ideal testbed to verify current models and develop mitigation / protection techniques.
The proposed project paves the way for providing active control techniques to tame the MHD induced particle transport in a fusion plasma. A solid understanding of the interaction between energetic particles and MHD instabilities in the presence of electric fields and plasma currents is required to develop such techniques. I will pursue this goal through innovative diagnosis techniques with unprecedented spatio-temporal resolution. Combined with state-of-the-art hybrid MHD codes, a deep insight into the underlying physics mechanism will be gained. The outcome of this research project will have a major impact for next-step MCF devices as I will provide ground-breaking control techniques for mitigating MHD induced particle transport in magnetized plasmas.
The project consists of 3 research lines which follow a bottom-up approach:
(1) Cutting-edge instrumentation, aiming at the new generation of energetic particle and edge current diagnostics.
(2) Unravel the dynamics of energetic particles, electric fields, edge currents and MHD fluctuations.
(3) From lab to space weather: The developed models will revolutionize our understanding of the observed particle acceleration and transport in the solar corona.
Based on this approach, the project represents a gateway between the fusion, astrophysics and space communities opening new avenues for a common basic understanding.
Max ERC Funding
1 512 250 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym 3D-PXM
Project 3D Piezoresponse X-ray Microscopy
Researcher (PI) Hugh SIMONS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Summary
Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Max ERC Funding
1 496 941 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ABRSEIST
Project Antibiotic Resistance: Socio-Economic Determinants and the Role of Information and Salience in Treatment Choice
Researcher (PI) Hannes ULLRICH
Host Institution (HI) DEUTSCHES INSTITUT FUR WIRTSCHAFTSFORSCHUNG DIW (INSTITUT FUR KONJUNKTURFORSCHUNG) EV
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Summary
Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Max ERC Funding
1 498 920 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AncientAdhesives
Project Ancient Adhesives - A window on prehistoric technological complexity
Researcher (PI) Geeske LANGEJANS
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Summary
AncientAdhesives addresses the most crucial problem in Palaeolithic archaeology: How to reliably infer cognitively complex behaviour in the deep past. To study the evolution of Neandertal and modern human cognitive capacities, certain find categories are taken to reflect behavioural and thus cognitive complexitye.g. Among these are art objects, personal ornaments and complex technology. Of these technology is best-suited to trace changing behavioural complexity, because 1) it is the least vulnerable to differential preservation, and 2) technological behaviours are present throughout the history of our genus. Adhesives are the oldest examples of highly complex technology. They are also known earlier from Neandertal than from modern human contexts. Understanding their technological complexity is thus essential to resolve debates on differences in cognitive complexity of both species. However, currently, there is no agreed-upon method to measure technological complexity.
The aim of AncientAdhesives is to create the first reliable method to compare the complexity of Neandertal and modern human technologies. This is achieved through three main objectives:
1. Collate the first comprehensive body of knowledge on adhesives, including ethnography, archaeology and (experimental) material properties (e.g. preservation, production).
2. Develop a new archaeological methodology by modifying industrial process modelling for archaeological applications.
3. Evaluate the development of adhesive technological complexity through time and across species using a range of explicit complexity measures.
By analysing adhesives, it is possible to measure technological complexity, to identify idiosyncratic behaviours and to track adoption and loss of complex technological know-how. This represents a step-change in debates about the development of behavioural complexity and differences/similarities between Neanderthals and modern humans.
Max ERC Funding
1 499 926 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANGULON
Project Angulon: physics and applications of a new quasiparticle
Researcher (PI) Mikhail Lemeshko
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Summary
This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Max ERC Funding
1 499 588 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANTI-ATOM
Project Many-body theory of antimatter interactions with atoms, molecules and condensed matter
Researcher (PI) Dermot GREEN
Host Institution (HI) THE QUEEN'S UNIVERSITY OF BELFAST
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary The ability of positrons to annihilate with electrons, producing characteristic gamma rays, gives them important use in medicine via positron-emission tomography (PET), diagnostics of industrially-important materials, and in elucidating astrophysical phenomena. Moreover, the fundamental interactions of positrons and positronium (Ps) with atoms, molecules and condensed matter are currently under intensive study in numerous international laboratories, to illuminate collision phenomena and perform precision tests of fundamental laws.
Proper interpretation and development of these costly and difficult experiments requires accurate calculations of low-energy positron and Ps interactions with normal matter. These systems, however, involve strong correlations, e.g., polarisation of the atom and virtual-Ps formation (where an atomic electron tunnels to the positron): they significantly effect positron- and Ps-atom/molecule interactions, e.g., enhancing annihilation rates by many orders of magnitude, and making the accurate description of these systems a challenging many-body problem. Current theoretical capability lags severely behind that of experiment. Major theoretical and computational developments are required to bridge the gap.
One powerful method, which accounts for the correlations in a natural, transparent and systematic way, is many-body theory (MBT). Building on my expertise in the field, I propose to develop new MBT to deliver unique and unrivalled capability in theory and computation of low-energy positron and Ps interactions with atoms, molecules, and condensed matter. The ambitious programme will provide the basic understanding required to interpret and develop the fundamental experiments, antimatter-based materials science techniques, and wider technologies, e.g., (PET), and more broadly, potentially revolutionary and generally applicable computational methodologies that promise to define a new level of high-precision in atomic-MBT calculations.
Summary
The ability of positrons to annihilate with electrons, producing characteristic gamma rays, gives them important use in medicine via positron-emission tomography (PET), diagnostics of industrially-important materials, and in elucidating astrophysical phenomena. Moreover, the fundamental interactions of positrons and positronium (Ps) with atoms, molecules and condensed matter are currently under intensive study in numerous international laboratories, to illuminate collision phenomena and perform precision tests of fundamental laws.
Proper interpretation and development of these costly and difficult experiments requires accurate calculations of low-energy positron and Ps interactions with normal matter. These systems, however, involve strong correlations, e.g., polarisation of the atom and virtual-Ps formation (where an atomic electron tunnels to the positron): they significantly effect positron- and Ps-atom/molecule interactions, e.g., enhancing annihilation rates by many orders of magnitude, and making the accurate description of these systems a challenging many-body problem. Current theoretical capability lags severely behind that of experiment. Major theoretical and computational developments are required to bridge the gap.
One powerful method, which accounts for the correlations in a natural, transparent and systematic way, is many-body theory (MBT). Building on my expertise in the field, I propose to develop new MBT to deliver unique and unrivalled capability in theory and computation of low-energy positron and Ps interactions with atoms, molecules, and condensed matter. The ambitious programme will provide the basic understanding required to interpret and develop the fundamental experiments, antimatter-based materials science techniques, and wider technologies, e.g., (PET), and more broadly, potentially revolutionary and generally applicable computational methodologies that promise to define a new level of high-precision in atomic-MBT calculations.
Max ERC Funding
1 318 419 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANYON
Project Engineering and exploring anyonic quantum gases
Researcher (PI) Christof WEITENBERG
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.
Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.
Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.
In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Summary
This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.
Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.
Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.
In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Max ERC Funding
1 497 500 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ArtHistCEE
Project Art Historiographies in Central and Eastern EuropeAn Inquiry from the Perspective of Entangled Histories
Researcher (PI) Ada HAJDU
Host Institution (HI) FUNDATIA NOUA EUROPA
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary Our project proposes a fragmentary account of the art histories produced in present-day Poland, Hungary, Slovakia, Romania, Bulgaria and Serbia between 1850 and 1950, from an entangled histories perspective. We will look at the relationships between the art histories produced in these countries and the art histories produced in Western Europe. But, more importantly, we will investigate how the art histories written in the countries mentioned above resonate with each other, either proposing conflicting interpretations of the past, or ignoring uncomfortable competing discourses. We will investigate the art histories written between 1850 and 1950 because we are interested in how art history contributed to nation building discourses. Therefore, we will focus on those art histories that concur to nationalising the past. Our project is articulated around three crucial concepts – periodisation, style and influence – set in the context of relevant contemporary historiographies produced in Western Europe, and analysing the entanglements with competing historiographies in each of the countries considered. We will focus on two main issues: 1. How did Central and Eastern European art historians adopt, adapt and respond to theoretical and methodological issues developed elsewhere, and 2. What are the periodisations of art produced on the territory of Central and Eastern European countries; what are the theoretical and methodological strategies for conceptualising local styles; and how was the concept of influence used in establishing hierarchical relationships. Researching the conceptualisation of a theoretical framework that would accommodate the artistic production of the past will show the difficulties in dealing with a complex reality without simplifying and essentializing it along ideological lines. The research will also show that the three concepts that we focus on are not neutral or strictly descriptive, and that their use in art history needs to be reconsidered.
Summary
Our project proposes a fragmentary account of the art histories produced in present-day Poland, Hungary, Slovakia, Romania, Bulgaria and Serbia between 1850 and 1950, from an entangled histories perspective. We will look at the relationships between the art histories produced in these countries and the art histories produced in Western Europe. But, more importantly, we will investigate how the art histories written in the countries mentioned above resonate with each other, either proposing conflicting interpretations of the past, or ignoring uncomfortable competing discourses. We will investigate the art histories written between 1850 and 1950 because we are interested in how art history contributed to nation building discourses. Therefore, we will focus on those art histories that concur to nationalising the past. Our project is articulated around three crucial concepts – periodisation, style and influence – set in the context of relevant contemporary historiographies produced in Western Europe, and analysing the entanglements with competing historiographies in each of the countries considered. We will focus on two main issues: 1. How did Central and Eastern European art historians adopt, adapt and respond to theoretical and methodological issues developed elsewhere, and 2. What are the periodisations of art produced on the territory of Central and Eastern European countries; what are the theoretical and methodological strategies for conceptualising local styles; and how was the concept of influence used in establishing hierarchical relationships. Researching the conceptualisation of a theoretical framework that would accommodate the artistic production of the past will show the difficulties in dealing with a complex reality without simplifying and essentializing it along ideological lines. The research will also show that the three concepts that we focus on are not neutral or strictly descriptive, and that their use in art history needs to be reconsidered.
Max ERC Funding
1 192 250 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AxScale
Project Axions and relatives across different mass scales
Researcher (PI) Babette DÖBRICH
Host Institution (HI) EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Pseudoscalar QCD axions and axion-like Particles (ALPs) are an excellent candidate for Dark Matter or can act as a mediator particle for Dark Matter. Since the discovery of the Higgs boson, we know that fundamental scalars exist and it is timely to explore the Axion/ALP parameter space more intensively. A look at the allowed axion/ALP parameter space makes it clear that these might exist at low mass (below few eV), as (part of) Dark Matter. Alternatively they might exist at higher mass, above roughly the MeV scale, potentially as a Dark Matter mediator particle. AxScale explores parts of these different mass regions, with complementary techniques but with one research team.
Firstly, with RADES, it develops a novel concept for a filter-like cavity for the search of QCD axion Dark matter at a few tens of a micro-eV. Dark Matter Axions can be discovered by their resonant conversion in that cavity embedded in a strong magnetic field. The `classical axion window' has recently received much interest from cosmological model-building and I will implement a novel cavity concept that will allow to explore this Dark Matter parameter region.
Secondly, AxScale searches for axions and ALPs using the NA62 detector at CERN's SPS. Especially the mass region above a few MeV can be efficiently searched by the use of a proton fixed-target facility. During nominal data taking NA62 investigates a Kaon beam. NA62 can also run in a mode in which its primary proton beam is fully dumped. With the resulting high interaction rate, the existence of weakly coupled particles can be efficiently probed. Thus, searches for ALPs from Kaon decays as well as from production in dumped protons with NA62 are foreseen in AxScale. More generally, NA62 can look for a plethora of `Dark Sector' particles with recorded and future data. With the AxScale program I aim at maximizing the reach of NA62 for these new physics models.
Summary
Pseudoscalar QCD axions and axion-like Particles (ALPs) are an excellent candidate for Dark Matter or can act as a mediator particle for Dark Matter. Since the discovery of the Higgs boson, we know that fundamental scalars exist and it is timely to explore the Axion/ALP parameter space more intensively. A look at the allowed axion/ALP parameter space makes it clear that these might exist at low mass (below few eV), as (part of) Dark Matter. Alternatively they might exist at higher mass, above roughly the MeV scale, potentially as a Dark Matter mediator particle. AxScale explores parts of these different mass regions, with complementary techniques but with one research team.
Firstly, with RADES, it develops a novel concept for a filter-like cavity for the search of QCD axion Dark matter at a few tens of a micro-eV. Dark Matter Axions can be discovered by their resonant conversion in that cavity embedded in a strong magnetic field. The `classical axion window' has recently received much interest from cosmological model-building and I will implement a novel cavity concept that will allow to explore this Dark Matter parameter region.
Secondly, AxScale searches for axions and ALPs using the NA62 detector at CERN's SPS. Especially the mass region above a few MeV can be efficiently searched by the use of a proton fixed-target facility. During nominal data taking NA62 investigates a Kaon beam. NA62 can also run in a mode in which its primary proton beam is fully dumped. With the resulting high interaction rate, the existence of weakly coupled particles can be efficiently probed. Thus, searches for ALPs from Kaon decays as well as from production in dumped protons with NA62 are foreseen in AxScale. More generally, NA62 can look for a plethora of `Dark Sector' particles with recorded and future data. With the AxScale program I aim at maximizing the reach of NA62 for these new physics models.
Max ERC Funding
1 134 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31