Project acronym CRC PROGRAMME
Project Dissecting the roles of the beta-catenin and Tcf genetic programmes during colorectal cancer progression
Researcher (PI) Eduard Batlle Gomez
Host Institution (HI) FUNDACIO INSTITUT DE RECERCA BIOMEDICA (IRB BARCELONA)
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Most colorectal cancers (CRCs) are initiated by activating mutations in components of the Wnt signalling pathway. Physiological Wnt signals are required for the specification and maintenance of the stem and progenitor cell compartments of the intestinal crypts. We demonstrated that early colorectal lesions exhibit a constitutive Wnt target gene programme, which is very similar to that of normal intestinal stem and progenitor cells. We originally proposed that colorectal adenomas behave as clusters of intestinal cells locked into a constitutive crypt progenitor phenotype. Given the prevalence of Wnt signalling mutations in CRC, an outstanding endeavour is the characterization of the similarities and differences in the instructions dictated by beta-catenin and Tcf to normal intestinal cells vs. CRC cells. Here, we propose to systematically compare and catalogue the beta-catenin/Tcf genetic programmes in intestinal progenitor/stem cells, intestinal adenomas and late CRCs. Transcriptomic analysis of isolated normal progenitor cells and tumor cell populations combined with bioinformatic analysis of gene regulatory networks will allow us to workout the hierarchical interactions downstream of beta-catenin and Tcf. Moreover, functional analysis of key beta-catenin/Tcf target genes using genetically modified mice models will help us to pinpoint which Wnt-controlled functions are essential for tumor maintenance and progression in vivo. Moreover, we seek to understand the tumor suppressor role of EphB2 and EphB3 receptors, two beta-catenin/Tcf target genes in normal crypts and benign colorectal adenomas, that block cancer progression by compartmentalizing tumor cells at the onset of CRC. Overall, our results will shed light on the relationship between stem/progenitor cells and cancer and hold potential for the future development of both therapeutic and diagnostic tools.
Summary
Most colorectal cancers (CRCs) are initiated by activating mutations in components of the Wnt signalling pathway. Physiological Wnt signals are required for the specification and maintenance of the stem and progenitor cell compartments of the intestinal crypts. We demonstrated that early colorectal lesions exhibit a constitutive Wnt target gene programme, which is very similar to that of normal intestinal stem and progenitor cells. We originally proposed that colorectal adenomas behave as clusters of intestinal cells locked into a constitutive crypt progenitor phenotype. Given the prevalence of Wnt signalling mutations in CRC, an outstanding endeavour is the characterization of the similarities and differences in the instructions dictated by beta-catenin and Tcf to normal intestinal cells vs. CRC cells. Here, we propose to systematically compare and catalogue the beta-catenin/Tcf genetic programmes in intestinal progenitor/stem cells, intestinal adenomas and late CRCs. Transcriptomic analysis of isolated normal progenitor cells and tumor cell populations combined with bioinformatic analysis of gene regulatory networks will allow us to workout the hierarchical interactions downstream of beta-catenin and Tcf. Moreover, functional analysis of key beta-catenin/Tcf target genes using genetically modified mice models will help us to pinpoint which Wnt-controlled functions are essential for tumor maintenance and progression in vivo. Moreover, we seek to understand the tumor suppressor role of EphB2 and EphB3 receptors, two beta-catenin/Tcf target genes in normal crypts and benign colorectal adenomas, that block cancer progression by compartmentalizing tumor cells at the onset of CRC. Overall, our results will shed light on the relationship between stem/progenitor cells and cancer and hold potential for the future development of both therapeutic and diagnostic tools.
Max ERC Funding
1 602 817 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym DORMANTOOCYTE
Project Understanding the Balbiani body: A super-organelle linked to dormancy in oocytes
Researcher (PI) Elvan Boke
Host Institution (HI) FUNDACIO CENTRE DE REGULACIO GENOMICA
Call Details Starting Grant (StG), LS3, ERC-2017-STG
Summary Female germ cells, oocytes, are highly specialised cells. They ensure the continuity of species by providing the female genome and mitochondria along with most of the nutrients and housekeeping machinery the early embryo needs after fertilisation. Oocytes are remarkable in their ability to survive for long periods of time, up to 50 years in humans, and retain the ability to give rise to a young organism while other cells age and die. Surprisingly little is known about oocyte dormancy. A key feature of dormant oocytes of virtually all vertebrates is the presence of a Balbiani body, which is a non-membrane bound compartment that contains most of the organelles in dormant oocytes and disappears as the oocyte matures.
The goal of this proposal is to combine genetic and biochemical perturbations with imaging and the state of the art proteomics techniques to reveal the mechanisms dormant oocytes employ to remain viable. My previous research has shown that the Balbiani body forms an amyloid-like cage around organelles that could be protective. This has led me to identify the large number of unanswered questions about the cell biology of a dormant oocyte. In this proposal, we will study three of these questions: 1) What is the metabolic nature of organelles in dormant oocytes? 2) How does the Balbiani body disassemble and release the complement of organelles when oocytes start to mature? 3) What is the structure and function of the Balbiani body in mammals? We will use oocytes from two vertebrate species, frogs and mice, which are complementary for their ease of handling and relationship to human physiology.
By studying the Balbiani body, this proposal will provide fundamental insights into organisation and function of organelles in oocytes and the regulation of physiological amyloid-like structures. More generally, the proposed experiments open up new avenues into the mechanisms that protect organelles from ageing and how oocytes stay dormant for many decades.
Summary
Female germ cells, oocytes, are highly specialised cells. They ensure the continuity of species by providing the female genome and mitochondria along with most of the nutrients and housekeeping machinery the early embryo needs after fertilisation. Oocytes are remarkable in their ability to survive for long periods of time, up to 50 years in humans, and retain the ability to give rise to a young organism while other cells age and die. Surprisingly little is known about oocyte dormancy. A key feature of dormant oocytes of virtually all vertebrates is the presence of a Balbiani body, which is a non-membrane bound compartment that contains most of the organelles in dormant oocytes and disappears as the oocyte matures.
The goal of this proposal is to combine genetic and biochemical perturbations with imaging and the state of the art proteomics techniques to reveal the mechanisms dormant oocytes employ to remain viable. My previous research has shown that the Balbiani body forms an amyloid-like cage around organelles that could be protective. This has led me to identify the large number of unanswered questions about the cell biology of a dormant oocyte. In this proposal, we will study three of these questions: 1) What is the metabolic nature of organelles in dormant oocytes? 2) How does the Balbiani body disassemble and release the complement of organelles when oocytes start to mature? 3) What is the structure and function of the Balbiani body in mammals? We will use oocytes from two vertebrate species, frogs and mice, which are complementary for their ease of handling and relationship to human physiology.
By studying the Balbiani body, this proposal will provide fundamental insights into organisation and function of organelles in oocytes and the regulation of physiological amyloid-like structures. More generally, the proposed experiments open up new avenues into the mechanisms that protect organelles from ageing and how oocytes stay dormant for many decades.
Max ERC Funding
1 381 286 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym DSBRECA
Project Relevance of double strand break repair pathway choice in human disease and cancer
Researcher (PI) Pablo Huertas Sanchez
Host Institution (HI) UNIVERSIDAD DE SEVILLA
Call Details Starting Grant (StG), LS2, ERC-2011-StG_20101109
Summary "Double strand breaks (DSBs) repair is essential for normal development. While the complete inability to repair DSBs leads to embryonic lethality and cell death, mutations that hamper this repair cause genetically inherited syndromes, with or without cancer predisposition. The phenotypes associated with these syndromes are extremely varied, and can include growth and mental retardation, ataxia, skeletal abnormalities, immunodeficiency, premature aging, etc. Moreover, DSBs play an extremely relevant role in the biology of cancer. Alterations in the DSBs repair pathways facilitate tumour progression and are selected early on during cancer development. On the other hand, DSBs are the molecular base of radiotherapies and chemotherapies. This double role of DSBs in both, the genesis and treatment of cancer makes the understanding of the mechanisms that control their repair of capital importance in cancer research.
DSBs are repaired by two major mechanisms that compete for the same substrate. Both ends of the DSB can be simple re-joined with little or no processing, a mechanism known as non-homologous end-joining. On the other hand, DSBs can be processed and engaged in a more complex repair pathway called homologous recombination. This pathway uses the information present in a homologue sequence. The balance between these two pathways is exquisitely controlled and its alteration leads to the appearance of chromosomal abnormalities and contribute to the diseases aforementioned. However, and despite its importance, the network controlling the choice between both is poorly understood.
Here, we propose a series of research lines designed to investigate how the choice between both DSBs repair pathways is made, its relevance for cellular and organismal survival and disease, and its potential as a therapeutic target for the treatment of cancer and some genetically inherited disorders."
Summary
"Double strand breaks (DSBs) repair is essential for normal development. While the complete inability to repair DSBs leads to embryonic lethality and cell death, mutations that hamper this repair cause genetically inherited syndromes, with or without cancer predisposition. The phenotypes associated with these syndromes are extremely varied, and can include growth and mental retardation, ataxia, skeletal abnormalities, immunodeficiency, premature aging, etc. Moreover, DSBs play an extremely relevant role in the biology of cancer. Alterations in the DSBs repair pathways facilitate tumour progression and are selected early on during cancer development. On the other hand, DSBs are the molecular base of radiotherapies and chemotherapies. This double role of DSBs in both, the genesis and treatment of cancer makes the understanding of the mechanisms that control their repair of capital importance in cancer research.
DSBs are repaired by two major mechanisms that compete for the same substrate. Both ends of the DSB can be simple re-joined with little or no processing, a mechanism known as non-homologous end-joining. On the other hand, DSBs can be processed and engaged in a more complex repair pathway called homologous recombination. This pathway uses the information present in a homologue sequence. The balance between these two pathways is exquisitely controlled and its alteration leads to the appearance of chromosomal abnormalities and contribute to the diseases aforementioned. However, and despite its importance, the network controlling the choice between both is poorly understood.
Here, we propose a series of research lines designed to investigate how the choice between both DSBs repair pathways is made, its relevance for cellular and organismal survival and disease, and its potential as a therapeutic target for the treatment of cancer and some genetically inherited disorders."
Max ERC Funding
1 416 866 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym EFFORT
Project Effort and Social Inequality: Advancing Measurement and Understanding Parental Origin Effects
Researcher (PI) JONAS FALK RADL
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary This project aims to understand the role of effort in the reproduction of social inequality. While large-scale test programs like PISA have produced impressive amounts of data on the determinants of cognitive abilities, there is scant evidence on socio-economic differences in cognitive effort. Better understanding the social origins of effort pushes the frontier of knowledge on intergenerational mobility and allows improving equality of opportunity. Specifically, the aim of the project is to answer three research questions:
1. To what extent do children’s effort levels differ by parental socioeconomic background? (descriptive component).
2. Can existing disparities in effort by social background be explained by (a) the intergenerational transmission of effort from parents to children, and (b) varying motivations and differential susceptibility to incentives? (analytical component).
3. What are the best techniques to measure cognitive effort and what are the strengths and weaknesses of measures routinely used in different scientific disciplines? (methodological component).
The project will develop and exploit cutting-edge methods of effort measurement such as real-effort tasks and psychophysiological techniques like pupillometry. Their immense potential has remained untapped in inequality research thus far. Experimental data will be collected for a large sample of school-age children and their parents in Spain and Germany. Subjective effort dispositions will be further analyzed using (inter)national surveys. The triangulation of carefully chosen methodologies will provide the first reliable evidence on socioeconomic differences in effort and stimulate new research (e.g. on gender or ethnic differentials in effort). Cross-validation analysis will detect possible biases of commonly used effort measures. The research findings will provide valuable insights for educational practitioners and decisive evidence for normative debates about social inequality and policy design.
Summary
This project aims to understand the role of effort in the reproduction of social inequality. While large-scale test programs like PISA have produced impressive amounts of data on the determinants of cognitive abilities, there is scant evidence on socio-economic differences in cognitive effort. Better understanding the social origins of effort pushes the frontier of knowledge on intergenerational mobility and allows improving equality of opportunity. Specifically, the aim of the project is to answer three research questions:
1. To what extent do children’s effort levels differ by parental socioeconomic background? (descriptive component).
2. Can existing disparities in effort by social background be explained by (a) the intergenerational transmission of effort from parents to children, and (b) varying motivations and differential susceptibility to incentives? (analytical component).
3. What are the best techniques to measure cognitive effort and what are the strengths and weaknesses of measures routinely used in different scientific disciplines? (methodological component).
The project will develop and exploit cutting-edge methods of effort measurement such as real-effort tasks and psychophysiological techniques like pupillometry. Their immense potential has remained untapped in inequality research thus far. Experimental data will be collected for a large sample of school-age children and their parents in Spain and Germany. Subjective effort dispositions will be further analyzed using (inter)national surveys. The triangulation of carefully chosen methodologies will provide the first reliable evidence on socioeconomic differences in effort and stimulate new research (e.g. on gender or ethnic differentials in effort). Cross-validation analysis will detect possible biases of commonly used effort measures. The research findings will provide valuable insights for educational practitioners and decisive evidence for normative debates about social inequality and policy design.
Max ERC Funding
1 499 572 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym ELONGAN
Project Gene editing and in vitro approaches to understand conceptus elongation in ungulates
Researcher (PI) Pablo BERMEJO-ÁLVAREZ
Host Institution (HI) INSTITUTO NACIONAL DE INVESTIGACION Y TECNOLOGIA AGRARIA Y ALIMENTARIA OA MP
Call Details Starting Grant (StG), LS9, ERC-2017-STG
Summary In contrast to human or rodent embryos, ungulate embryos do not implant into the uterus right after blastocyst hatching. Before implantation, the hatched ungulate blastocyst must undergo dramatic morphological changes characterized by cell differentiation, proliferation and migration processes leading to the development of extra-embryonic membranes, the appearance of a flat embryonic disc and gastrulation. This prolonged preimplantation development is termed conceptus elongation and deficiencies on this process constitute the most frequent cause of reproductive failures in ungulates, including the 4 most relevant mammalian livestock species in Europe. The purpose of this project is to elucidate the factors involved in conceptus elongation by gene editing and in vitro culture approaches. A first objective will be to identify key genes involved in differentiation processes by RNA-seq analysis of different embryo derivatives from bovine conceptuses at different developmental stages. Subsequently, the function of some of the genes identified as well as others known to play a crucial role in mouse development or putatively involved in embryo-maternal interactions will be assessed. For this aim, bovine embryos in which a candidate gene has been ablated (KO) will be generated by CRISPR and transferred to recipient females to assess in vivo the function of such particular gene on conceptus development. A second set of experiments pursue the development of an in vitro system for conceptus elongation that would bypass the requirement for in vivo experiments. For this aim we will perform metabolomics and proteomics analyses of bovine uterine fluid at different stages and will use these data to rationally develop a culture system able to sustain conceptus development. The knowledge generated by this project will serve to develop strategies to enhance farming profitability by reducing embryonic loss and to understand Developmental Biology questions unanswered by the mouse model.
Summary
In contrast to human or rodent embryos, ungulate embryos do not implant into the uterus right after blastocyst hatching. Before implantation, the hatched ungulate blastocyst must undergo dramatic morphological changes characterized by cell differentiation, proliferation and migration processes leading to the development of extra-embryonic membranes, the appearance of a flat embryonic disc and gastrulation. This prolonged preimplantation development is termed conceptus elongation and deficiencies on this process constitute the most frequent cause of reproductive failures in ungulates, including the 4 most relevant mammalian livestock species in Europe. The purpose of this project is to elucidate the factors involved in conceptus elongation by gene editing and in vitro culture approaches. A first objective will be to identify key genes involved in differentiation processes by RNA-seq analysis of different embryo derivatives from bovine conceptuses at different developmental stages. Subsequently, the function of some of the genes identified as well as others known to play a crucial role in mouse development or putatively involved in embryo-maternal interactions will be assessed. For this aim, bovine embryos in which a candidate gene has been ablated (KO) will be generated by CRISPR and transferred to recipient females to assess in vivo the function of such particular gene on conceptus development. A second set of experiments pursue the development of an in vitro system for conceptus elongation that would bypass the requirement for in vivo experiments. For this aim we will perform metabolomics and proteomics analyses of bovine uterine fluid at different stages and will use these data to rationally develop a culture system able to sustain conceptus development. The knowledge generated by this project will serve to develop strategies to enhance farming profitability by reducing embryonic loss and to understand Developmental Biology questions unanswered by the mouse model.
Max ERC Funding
1 480 880 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym EndoMitTalk
Project Endolysosomal-mitochondria crosstalk in cell and organism homeostasis
Researcher (PI) María MITTELBRUM
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been displaced by the concept that mitochondria are fully integrated into the life of the cell and that mitochondrial function and stress response rapidly affect other organelles, and even other tissues. A recent discovery from my lab demonstrated that mitochondrial metabolism regulates lysosomal degradation (Cell Metabolism, 2015), thus opening the way to investigate the mechanism behind communication between these organelles and its consequences for homeostasis. With this proposal, we want to assess how mitochondrial crosstalk with endolysosomal compartment controls cellular homeostasis and how mitochondrial dysfunction in certain tissues may account for systemic effects on the rest of the organism. EndoMitTalk will deliver significant breakthroughs on (1) the molecular mediators of endolysosomal-mitochondria communication, and how deregulation of this crosstalk alters cellular (2), and organism homeostasis (3). Our central goals are: 1a,b. To identify metabolic and physical connections mediating endolysosomal-mitochondria crosstalk; 2a. To decode the consequences of altered interorganelle communication in cellular homeostasis 2b. To study the therapeutic potential of improving lysosomal function in respiration-deficient cells; 3a. To assess how unresolved organelle dysfunction and metabolic stresses exclusively in immune cells affects organism homeostasis and lifespan. 3b. To decipher the molecular mediators by which organelle dysfunction in T cells contributes to age-associated diseases, with special focus in cardiorenal and metabolic syndromes. In sum, EndoMitTalk puts forward an ambitious and multidisciplinary but feasible program with the wide purpose of understanding and improving clinical interventions in mitochondrial diseases and age-related pathologies.
Summary
For many years, mitochondria were viewed as semiautonomous organelles, required only for cellular energetics. This view has been displaced by the concept that mitochondria are fully integrated into the life of the cell and that mitochondrial function and stress response rapidly affect other organelles, and even other tissues. A recent discovery from my lab demonstrated that mitochondrial metabolism regulates lysosomal degradation (Cell Metabolism, 2015), thus opening the way to investigate the mechanism behind communication between these organelles and its consequences for homeostasis. With this proposal, we want to assess how mitochondrial crosstalk with endolysosomal compartment controls cellular homeostasis and how mitochondrial dysfunction in certain tissues may account for systemic effects on the rest of the organism. EndoMitTalk will deliver significant breakthroughs on (1) the molecular mediators of endolysosomal-mitochondria communication, and how deregulation of this crosstalk alters cellular (2), and organism homeostasis (3). Our central goals are: 1a,b. To identify metabolic and physical connections mediating endolysosomal-mitochondria crosstalk; 2a. To decode the consequences of altered interorganelle communication in cellular homeostasis 2b. To study the therapeutic potential of improving lysosomal function in respiration-deficient cells; 3a. To assess how unresolved organelle dysfunction and metabolic stresses exclusively in immune cells affects organism homeostasis and lifespan. 3b. To decipher the molecular mediators by which organelle dysfunction in T cells contributes to age-associated diseases, with special focus in cardiorenal and metabolic syndromes. In sum, EndoMitTalk puts forward an ambitious and multidisciplinary but feasible program with the wide purpose of understanding and improving clinical interventions in mitochondrial diseases and age-related pathologies.
Max ERC Funding
1 498 625 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym EPIPLURIRETRO
Project Epigenetic control and impact of mammalian retrotransposons in pluripotent genomes
Researcher (PI) José Luis Garcia Perez
Host Institution (HI) FUNDACION PUBLICA ANDALUZA PROGRESO Y SALUD
Call Details Starting Grant (StG), LS1, ERC-2012-StG_20111109
Summary Almost half of the human genome is made of Transposable Elements (TEs), whose ongoing activity continually impacts our genome. However, little is known about how the host regulates TEs and their genomic and epigenomic impacts. EpiPluriRetro will advance research in a new groundbreaking concept: that TEs are active in our pluripotent genome, and that epigenetic regulation is employed therein to regulate TE activity. LINE-1 retrotransposons comprise approximately 20% of the mammalian genome, and L1 retrotransposition events can create genetic diversity by a variety of mechanisms. From acting as simple insertion mutagens to inducing other complex genomic alterations it is becoming increasingly evident that the activity of TEs is a major force driving human genome evolution. It has been demonstrated that the main mutagenic load associated with TE mobilization occurs during early human embryogenesis (i.e., our pluripotent genome). EpiPluriRetro will examine how epigenetic mechanisms influence LINE-1 retrotransposition in pluripotent cells. To do that, we will combine genetic, biochemical and genomics approaches to identify pluripotent host factors that influence the fate of LINE-1 retrotransposition. In addition, EpiPluriRetro will analyze the impact of LINE-1 insertions in our pluripotent genome and the Epimutagenic impact of new LINE-1 mobilization events in pluripotent cells. To do that, we have developed an innovative approach to analyze the effect of LINE-1 insertions within human genes without biases, including epigenetic alterations induced by a new L1 insertion. EpiPluriRetro will help to understand how the activity of TEs is controlled in our heritable genome, which will directly impact our knowledge in how new genetic diseases are generated in humans. In addition, EpiPluriRetro will allow us to describe a new concept in human biology, as we will analyze how new TE insertions can modify the chromatin status of flanking genomic regions where they insert.
Summary
Almost half of the human genome is made of Transposable Elements (TEs), whose ongoing activity continually impacts our genome. However, little is known about how the host regulates TEs and their genomic and epigenomic impacts. EpiPluriRetro will advance research in a new groundbreaking concept: that TEs are active in our pluripotent genome, and that epigenetic regulation is employed therein to regulate TE activity. LINE-1 retrotransposons comprise approximately 20% of the mammalian genome, and L1 retrotransposition events can create genetic diversity by a variety of mechanisms. From acting as simple insertion mutagens to inducing other complex genomic alterations it is becoming increasingly evident that the activity of TEs is a major force driving human genome evolution. It has been demonstrated that the main mutagenic load associated with TE mobilization occurs during early human embryogenesis (i.e., our pluripotent genome). EpiPluriRetro will examine how epigenetic mechanisms influence LINE-1 retrotransposition in pluripotent cells. To do that, we will combine genetic, biochemical and genomics approaches to identify pluripotent host factors that influence the fate of LINE-1 retrotransposition. In addition, EpiPluriRetro will analyze the impact of LINE-1 insertions in our pluripotent genome and the Epimutagenic impact of new LINE-1 mobilization events in pluripotent cells. To do that, we have developed an innovative approach to analyze the effect of LINE-1 insertions within human genes without biases, including epigenetic alterations induced by a new L1 insertion. EpiPluriRetro will help to understand how the activity of TEs is controlled in our heritable genome, which will directly impact our knowledge in how new genetic diseases are generated in humans. In addition, EpiPluriRetro will allow us to describe a new concept in human biology, as we will analyze how new TE insertions can modify the chromatin status of flanking genomic regions where they insert.
Max ERC Funding
1 453 800 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym EQUALIZE
Project Equalizing or disequalizing? Opposing socio-demographic determinants of the spatial distribution of welfare.
Researcher (PI) Iñaki Permanyer Ugartemendia
Host Institution (HI) CENTRO DE ESTUDIOS DEMOGRAFICOS
Call Details Starting Grant (StG), SH3, ERC-2014-STG
Summary This project aims to investigate the extent to which current trends in family formation, living arrangements and gender-specific education levels are related to the spatial distribution of welfare and the emergence of jobless households in contemporary societies. Inter alia, we aim to explore whether the welfare disequalizing, impoverishing and polarizing effects that are currently associated with recent patterns in assortative mating, lone parenthood and household composition are offset by an unprecedented phenomenon that is sweeping the world during the last decades: the rapid process education expansion in tandem with a reversal of the gender gap in education. The extent to which these two opposing forces occur and which of them is more influential in shaping the distribution of welfare between and within countries is among the main goals of this project. To this end, we will draw upon a variety of household surveys and the world largest sources of census microdata: the Integrated Public Use Microdata Series (IPUMS) project and the Latin American and Caribbean Demographic Centre. Because of their unparalleled geographical coverage and detail, these sources of data constitute exceptional instruments to study socio-demographic phenomena that have been vastly underutilized by the international research community. Triangulating our analysis at the micro, meso and macro levels, we will establish formal linkages between welfare distributions and its socio-demographic correlates to unveil insightful relationships that have been unsatisfactorily explored so far because of the lack of appropriately harmonized, sufficiently detailed and georeferenced datasets. We will strongly emphasize the spatial distribution of variables to unravel local patterns that might take place at highly disaggregated levels, therefore not being discernible to traditional (not as finely-grained) approaches.
Summary
This project aims to investigate the extent to which current trends in family formation, living arrangements and gender-specific education levels are related to the spatial distribution of welfare and the emergence of jobless households in contemporary societies. Inter alia, we aim to explore whether the welfare disequalizing, impoverishing and polarizing effects that are currently associated with recent patterns in assortative mating, lone parenthood and household composition are offset by an unprecedented phenomenon that is sweeping the world during the last decades: the rapid process education expansion in tandem with a reversal of the gender gap in education. The extent to which these two opposing forces occur and which of them is more influential in shaping the distribution of welfare between and within countries is among the main goals of this project. To this end, we will draw upon a variety of household surveys and the world largest sources of census microdata: the Integrated Public Use Microdata Series (IPUMS) project and the Latin American and Caribbean Demographic Centre. Because of their unparalleled geographical coverage and detail, these sources of data constitute exceptional instruments to study socio-demographic phenomena that have been vastly underutilized by the international research community. Triangulating our analysis at the micro, meso and macro levels, we will establish formal linkages between welfare distributions and its socio-demographic correlates to unveil insightful relationships that have been unsatisfactorily explored so far because of the lack of appropriately harmonized, sufficiently detailed and georeferenced datasets. We will strongly emphasize the spatial distribution of variables to unravel local patterns that might take place at highly disaggregated levels, therefore not being discernible to traditional (not as finely-grained) approaches.
Max ERC Funding
1 174 500 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym EVOLOR
Project Cognitive Ageing in Dogs
Researcher (PI) Eniko Kubinyi
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary The aim of this project is to understand the causal factors contributing to the cognitive decline during senescence and to develop sensitive and standardized behaviour tests for early detection in order to increase the welfare of affected species. With the rapidly ageing population of Europe, related research is a priority in the European Union.
We will focus both on characterising the ageing phenotype and the underlying biological processes in dogs as a well-established natural animal model. We develop a reliable and valid test battery applying innovative multidisciplinary methods (e.g. eye-tracking, motion path analysis, identification of behaviour using inertial sensors, EEG, fMRI, candidate gene, and epigenetics) in both longitudinal and cross-sectional studies. We expect to reveal specific environmental risk factors which hasten ageing and also protective factors which may postpone it. We aim to provide objective criteria (behavioural, physiological and genetic biomarkers) to assess and predict the ageing trajectory for specific individual dogs. This would help veterinarians to recognise the symptoms early, and initiate necessary counter actions.
This approach establishes the framework for answering the broad question that how we can extend the healthy life of ageing dogs which indirectly also contributes to the welfare of the owner and decreases veterinary expenses. The detailed description of the ageing phenotype may also facilitate the use of dogs as a natural model for human senescence, including the development and application of pharmaceutical interventions.
We expect that our approach offers the scientific foundation to delay the onset of cognitive ageing in dog populations by 1-2 years, and also increase the proportion of dogs that enjoy healthy ageing.
Summary
The aim of this project is to understand the causal factors contributing to the cognitive decline during senescence and to develop sensitive and standardized behaviour tests for early detection in order to increase the welfare of affected species. With the rapidly ageing population of Europe, related research is a priority in the European Union.
We will focus both on characterising the ageing phenotype and the underlying biological processes in dogs as a well-established natural animal model. We develop a reliable and valid test battery applying innovative multidisciplinary methods (e.g. eye-tracking, motion path analysis, identification of behaviour using inertial sensors, EEG, fMRI, candidate gene, and epigenetics) in both longitudinal and cross-sectional studies. We expect to reveal specific environmental risk factors which hasten ageing and also protective factors which may postpone it. We aim to provide objective criteria (behavioural, physiological and genetic biomarkers) to assess and predict the ageing trajectory for specific individual dogs. This would help veterinarians to recognise the symptoms early, and initiate necessary counter actions.
This approach establishes the framework for answering the broad question that how we can extend the healthy life of ageing dogs which indirectly also contributes to the welfare of the owner and decreases veterinary expenses. The detailed description of the ageing phenotype may also facilitate the use of dogs as a natural model for human senescence, including the development and application of pharmaceutical interventions.
We expect that our approach offers the scientific foundation to delay the onset of cognitive ageing in dog populations by 1-2 years, and also increase the proportion of dogs that enjoy healthy ageing.
Max ERC Funding
1 202 500 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym FORCEMAP
Project Intramolecular force mapping of enzymes in action: the role of strain in motor mechanisms
Researcher (PI) András Málnási-Csizmadia
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary A fundamental but unexplored problem in biology is whether and how enzymes use mechanical strain during their functioning. It is now evident that the knowledge of atomic structures and chemical interactions is not sufficient to understand the intricate mechanisms underlying enzyme specificity and efficiency. Several lines of evidence suggest that mechanical effects play crucial roles in enzyme activity. Therefore we aim to create detailed force maps that reveal how the intramolecular distribution of mechanical strains changes during the enzyme cycle and how these rearrangements drive the enzyme processes. The applicability of current nanotechniques for the investigation of this problem is limited because they do not allow simultaneous measurement of mechanical and enzymatic parameters. Thus we seek to open new avenues of research by developing site-specific sensors and passive or photoinducible molecular springs to measure force-dependent chemical/structural changes with high spatiotemporal resolution in myosin. Since force perturbations occur very rapidly, we are able to combine experimental studies with quasi-realistic in silico simulations to describe the physical background of enzyme function. We expect that our research will yield fundamental insights into the role of intramolecular strains in enzymes and thus greatly aid the design and control of enzyme processes (specificity, activity, regulation). Our studies may also lead to new paradigms in the understanding of motor systems.
Summary
A fundamental but unexplored problem in biology is whether and how enzymes use mechanical strain during their functioning. It is now evident that the knowledge of atomic structures and chemical interactions is not sufficient to understand the intricate mechanisms underlying enzyme specificity and efficiency. Several lines of evidence suggest that mechanical effects play crucial roles in enzyme activity. Therefore we aim to create detailed force maps that reveal how the intramolecular distribution of mechanical strains changes during the enzyme cycle and how these rearrangements drive the enzyme processes. The applicability of current nanotechniques for the investigation of this problem is limited because they do not allow simultaneous measurement of mechanical and enzymatic parameters. Thus we seek to open new avenues of research by developing site-specific sensors and passive or photoinducible molecular springs to measure force-dependent chemical/structural changes with high spatiotemporal resolution in myosin. Since force perturbations occur very rapidly, we are able to combine experimental studies with quasi-realistic in silico simulations to describe the physical background of enzyme function. We expect that our research will yield fundamental insights into the role of intramolecular strains in enzymes and thus greatly aid the design and control of enzyme processes (specificity, activity, regulation). Our studies may also lead to new paradigms in the understanding of motor systems.
Max ERC Funding
750 000 €
Duration
Start date: 2008-09-01, End date: 2014-08-31