Project acronym APES
Project Accuracy and precision for molecular solids
Researcher (PI) Jiri KLIMES
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Summary
The description of high pressure phases or polymorphism of molecular solids represents a significant scientific challenge both for experiment and theory. Theoretical methods that are currently used struggle to describe the tiny energy differences between different phases. It is the aim of this project to develop a scheme that would allow accurate and reliable predictions of the binding energies of molecular solids and of the energy differences between different phases.
To reach the required accuracy, we will combine the coupled cluster approach, widely used for reference quality calculations for molecules, with the random phase approximation (RPA) within periodic boundary conditions. As I have recently shown, RPA-based approaches are already some of the most accurate and practically usable methods for the description of extended systems. However, reliability is not only a question of accuracy. Reliable data need to be precise, that is, converged with the numerical parameters so that they are reproducible by other researchers.
Reproducibility is already a growing concern in the field. It is likely to become a considerable issue for highly accurate methods as the calculated energies have a stronger dependence on the simulation parameters such as the basis set size. Two main approaches will be explored to assure precision. First, we will develop the so-called asymptotic correction scheme to speed-up the convergence of the correlation energies with the basis set size. Second, we will directly compare the lattice energies from periodic and finite cluster based calculations. Both should yield identical answers, but if and how the agreement can be reached for general system is currently far from being understood for methods such as coupled cluster. Reliable data will allow us to answer some of the open questions regarding the stability of polymorphs and high pressure phases, such as the possibility of existence of high pressure ionic phases of water and ammonia.
Max ERC Funding
924 375 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym APGREID
Project Ancient Pathogen Genomics of Re-Emerging Infectious Disease
Researcher (PI) Johannes Krause
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary Here we propose a first step toward a direct reconstruction of the evolutionary history of human infectious disease agents by obtaining genome wide data of historic pathogens. Through an extensive screening of skeletal collections from well-characterized catastrophe, or emergency, mass burials we plan to detect and sequence pathogen DNA from various historic pandemics spanning at least 2,500 years using a general purpose molecular capture method that will screen for hundreds of pathogens in a single assay. Subsequent experiments will attempt to reconstruct full genomes from all pathogenic species identified. The molecular fossil record of human pathogens will provide insights into host adaptation and evolutionary rates of infectious disease. In addition, human genomic regions relating to disease susceptibility and immunity will be characterized in the skeletal material in order to observe the direct effect that pathogens have made on the genetic makeup of human populations over time. The results of this project will allow a multidisciplinary interpretation of historical pandemics that have influenced the course of human history. It will provide priceless information for the field of history, evolutionary biology, anthropology as well as medicine and will have direct consequences on how we manage emerging and re-emerging infectious disease in the future.
Summary
Here we propose a first step toward a direct reconstruction of the evolutionary history of human infectious disease agents by obtaining genome wide data of historic pathogens. Through an extensive screening of skeletal collections from well-characterized catastrophe, or emergency, mass burials we plan to detect and sequence pathogen DNA from various historic pandemics spanning at least 2,500 years using a general purpose molecular capture method that will screen for hundreds of pathogens in a single assay. Subsequent experiments will attempt to reconstruct full genomes from all pathogenic species identified. The molecular fossil record of human pathogens will provide insights into host adaptation and evolutionary rates of infectious disease. In addition, human genomic regions relating to disease susceptibility and immunity will be characterized in the skeletal material in order to observe the direct effect that pathogens have made on the genetic makeup of human populations over time. The results of this project will allow a multidisciplinary interpretation of historical pandemics that have influenced the course of human history. It will provide priceless information for the field of history, evolutionary biology, anthropology as well as medicine and will have direct consequences on how we manage emerging and re-emerging infectious disease in the future.
Max ERC Funding
1 474 560 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ApoptoMDS
Project Hematopoietic stem cell Apoptosis in bone marrow failure and MyeloDysplastic Syndromes: Friend or foe?
Researcher (PI) Miriam Erlacher
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Summary
Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Max ERC Funding
1 372 525 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym AQUARAMAN
Project Pipet Based Scanning Probe Microscopy Tip-Enhanced Raman Spectroscopy: A Novel Approach for TERS in Liquids
Researcher (PI) Aleix Garcia Guell
Host Institution (HI) ECOLE POLYTECHNIQUE
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Summary
Tip-enhanced Raman spectroscopy (TERS) is often described as the most powerful tool for optical characterization of surfaces and their proximities. It combines the intrinsic spatial resolution of scanning probe techniques (AFM or STM) with the chemical information content of vibrational Raman spectroscopy. Capable to reveal surface heterogeneity at the nanoscale, TERS is currently playing a fundamental role in the understanding of interfacial physicochemical processes in key areas of science and technology such as chemistry, biology and material science.
Unfortunately, the undeniable potential of TERS as a label-free tool for nanoscale chemical and structural characterization is, nowadays, limited to air and vacuum environments, with it failing to operate in a reliable and systematic manner in liquid. The reasons are more technical than fundamental, as what is hindering the application of TERS in water is, among other issues, the low stability of the probes and their consistency. Fields of science and technology where the presence of water/electrolyte is unavoidable, such as biology and electrochemistry, remain unexplored with this powerful technique.
We propose a revolutionary approach for TERS in liquids founded on the employment of pipet-based scanning probe microscopy techniques (pb-SPM) as an alternative to AFM and STM. The use of recent but well established pb-SPM brings the opportunity to develop unprecedented pipet-based TERS probes (beyond the classic and limited metallized solid probes from AFM and STM), together with the implementation of ingenious and innovative measures to enhance tip stability, sensitivity and reliability, unattainable with the current techniques.
We will be in possession of a unique nano-spectroscopy platform capable of experiments in liquids, to follow dynamic processes in-situ, addressing fundamental questions and bringing insight into interfacial phenomena spanning from materials science, physics, chemistry and biology.
Max ERC Funding
1 528 442 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ARBODYNAMIC
Project Coupling dynamic population immunity profiles and host behaviours to arboviral spread
Researcher (PI) Henrik SALJE
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Arboviruses infect millions of people each year, however, mechanisms that drive viral emergence and maintenance remain largely unknown. A combination of host factors (e.g., human mobility), mosquito factors (e.g., abundance) and viral factors (e.g., transmissibility) interconnect to drive spread. Further, for endemic arboviruses, complex patterns of population immunity, built up over many years, appear key to the emergence of particular lineages. To disentangle the contribution of these different drivers, we need detailed data from the same pathogen system over a long time period from the same location. In addition, we need new methods, which can integrate these different data sources and allow appropriate mechanistic inferences.
In this project, I will use the most globally prevalent arbovirus, dengue virus, as a case study. I will focus on Thailand where all four dengue serotypes have circulated endemically for decades and excellent long-term data and isolates exist, to address two fundamental questions:
i) How do population-level patterns of immunity evolve over time and what is their impact on strain dynamics? I will use mechanistic models applied to historic serotype-specific case data to reconstruct the evolving immune profile of the population and explore the impact of immunity on viral diversity using sequences from archived isolates from each year over a 50-year period.
ii) How do human behaviors, vector densities interact with immunity to dictate spread? I will work with geolocated full genome sequences from across Thailand and use detailed data on how people move, their contact patterns, their immunity profiles and mosquito distributions to study competing hypotheses of how arboviruses spread. I will compare the key drivers of dengue spread with that found for outbreaks of Zika and chikungunya.
This proposal addresses fundamental questions about the mechanisms that drive arboviral emergence and spread that will be relevant across disease systems.
Summary
Arboviruses infect millions of people each year, however, mechanisms that drive viral emergence and maintenance remain largely unknown. A combination of host factors (e.g., human mobility), mosquito factors (e.g., abundance) and viral factors (e.g., transmissibility) interconnect to drive spread. Further, for endemic arboviruses, complex patterns of population immunity, built up over many years, appear key to the emergence of particular lineages. To disentangle the contribution of these different drivers, we need detailed data from the same pathogen system over a long time period from the same location. In addition, we need new methods, which can integrate these different data sources and allow appropriate mechanistic inferences.
In this project, I will use the most globally prevalent arbovirus, dengue virus, as a case study. I will focus on Thailand where all four dengue serotypes have circulated endemically for decades and excellent long-term data and isolates exist, to address two fundamental questions:
i) How do population-level patterns of immunity evolve over time and what is their impact on strain dynamics? I will use mechanistic models applied to historic serotype-specific case data to reconstruct the evolving immune profile of the population and explore the impact of immunity on viral diversity using sequences from archived isolates from each year over a 50-year period.
ii) How do human behaviors, vector densities interact with immunity to dictate spread? I will work with geolocated full genome sequences from across Thailand and use detailed data on how people move, their contact patterns, their immunity profiles and mosquito distributions to study competing hypotheses of how arboviruses spread. I will compare the key drivers of dengue spread with that found for outbreaks of Zika and chikungunya.
This proposal addresses fundamental questions about the mechanisms that drive arboviral emergence and spread that will be relevant across disease systems.
Max ERC Funding
1 499 896 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ARCHAIC ADAPT
Project Admixture accelerated adaptation: signals from modern, ancient and archaic DNA.
Researcher (PI) Emilia HUERTA-SANCHEZ
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Summary
With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym ARISE
Project The Ecology of Antibiotic Resistance
Researcher (PI) Roy Kishony
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Summary
Main goal. We aim to understand the puzzling coexistence of antibiotic-resistant and antibiotic-sensitive species in natural soil environments, using novel quantitative experimental techniques and mathematical analysis. The ecological insights gained will be translated into novel treatment strategies for combating antibiotic resistance.
Background. Microbial soil ecosystems comprise communities of species interacting through copious secretion of antibiotics and other chemicals. Defence mechanisms, i.e. resistance to antibiotics, are ubiquitous in these wild communities. However, in sharp contrast to clinical settings, resistance does not take over the population. Our hypothesis is that the ecological setting provides natural mechanisms that keep antibiotic resistance in check. We are motivated by our recent finding that specific antibiotic combinations can generate selection against resistance and that soil microbial strains produce compounds that directly target antibiotic resistant mechanisms.
Approaches. We will: (1) Isolate natural bacterial species from individual grains of soil, characterize their ability to produce and resist antibiotics and identify the spatial scale for correlations between resistance and production. (2) Systematically measure interactions between species and identify interaction patterns enriched in co-existing communities derived from the same grain of soil. (3) Introducing fluorescently-labelled resistant and sensitive strains into natural soil, we will measure the fitness cost and benefit of antibiotic resistance in situ and identify natural compounds that select against resistance. (4) Test whether such “selection-inverting” compounds can slow evolution of resistance to antibiotics in continuous culture experiments.
Conclusions. These findings will provide insights into the ecological processes that keep antibiotic resistance in check, and will suggest novel antimicrobial treatment strategies.
Max ERC Funding
1 900 000 €
Duration
Start date: 2012-09-01, End date: 2018-08-31
Project acronym ARISTOTLE
Project Aristotle in the Italian Vernacular: Rethinking Renaissance and Early-Modern Intellectual History (c. 1400–c. 1650)
Researcher (PI) Marco Sgarbi
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Call Details Starting Grant (StG), SH5, ERC-2013-StG
Summary From the twelfth to the seventeenth century, Aristotle’s writings lay at the foundation of Western culture, providing a body of knowledge and a set of analytical tools applicable to all areas of human investigation. Scholars of the Renaissance have emphasized the remarkable longevity and versatility of Aristotelianism, but their attention has remained firmly, and almost exclusively, fixed on the transmission of Aristotle’s works in Latin. Scarce attention has gone to works in the vernacular. Nonetheless, several important Renaissance figures wished to make Aristotle’s works accessible and available outside the narrow circle of professional philosophers and university professors. They believed that his works could provide essential knowledge to a broad set of readers, and embarked on an intense programme of translation and commentary to see this happen. It is the argument of this project that vernacular Aristotelianism made fundamental contributions to the thought of the period, anticipating many of the features of early modern philosophy and contributing to a new encyclopaedia of knowledge. Our project aims to offer the first detailed and comprehensive study of the vernacular diffusion of Aristotle through a series of analyses of its main texts. We will thus study works that fall within the two main Renaissance divisions of speculative philosophy (metaphysics, natural philosophy, mathematics, and logic) and civil philosophy (ethics, politics, rhetoric, and poetics). We will give strong attention to the contextualization of the texts they examine, as is standard practice in the best kind of intellectual history, focusing on institutional contexts, reading publics, the value of the vernacular, new visions of knowledge and eclecticism. With the work of the PI, two professors, 5 post-docs and two PhD students we aim to make considerable advances in the understanding of both speculative and civil philosophy within vernacular Aristotelianism.
Summary
From the twelfth to the seventeenth century, Aristotle’s writings lay at the foundation of Western culture, providing a body of knowledge and a set of analytical tools applicable to all areas of human investigation. Scholars of the Renaissance have emphasized the remarkable longevity and versatility of Aristotelianism, but their attention has remained firmly, and almost exclusively, fixed on the transmission of Aristotle’s works in Latin. Scarce attention has gone to works in the vernacular. Nonetheless, several important Renaissance figures wished to make Aristotle’s works accessible and available outside the narrow circle of professional philosophers and university professors. They believed that his works could provide essential knowledge to a broad set of readers, and embarked on an intense programme of translation and commentary to see this happen. It is the argument of this project that vernacular Aristotelianism made fundamental contributions to the thought of the period, anticipating many of the features of early modern philosophy and contributing to a new encyclopaedia of knowledge. Our project aims to offer the first detailed and comprehensive study of the vernacular diffusion of Aristotle through a series of analyses of its main texts. We will thus study works that fall within the two main Renaissance divisions of speculative philosophy (metaphysics, natural philosophy, mathematics, and logic) and civil philosophy (ethics, politics, rhetoric, and poetics). We will give strong attention to the contextualization of the texts they examine, as is standard practice in the best kind of intellectual history, focusing on institutional contexts, reading publics, the value of the vernacular, new visions of knowledge and eclecticism. With the work of the PI, two professors, 5 post-docs and two PhD students we aim to make considerable advances in the understanding of both speculative and civil philosophy within vernacular Aristotelianism.
Max ERC Funding
1 483 180 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ARSEM
Project LANGUAGE–PHILOLOGY–CULTURE: Arab Cultural Semantics in Transition
Researcher (PI) Kirill Dmitriev
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), SH5, ERC-2012-StG_20111124
Summary This project aims to study:
• the semantic development of the vocabulary of the Arabic language,
• philological discourses on the semantic changes in the language in the classical Arabic philological tradition (8th-10th centuries A.D.), and
• the impact of Arabic philology in the wider historical and cultural context of the Judaeo-Arab neo-classical heritage (12th-13th centuries A.D.) and Christian-Arab intellectual history on the eve of modernity (19th century A.D.).
The project will explore the universal cultural significance and the pivotal role of language consciousness in the history of Arab culture. It will introduce a new dimension into the existing research on the Arabic language and Arabic philology, which until now have been studied without any comprehensive cultural and social contextualisation. The project will focus on the process of the transmission of Arabic poetry, which provides detailed evidence of the development of Arabic philological thought and its universal significance for the theological, philosophical, historical and linguistic discourses of Arab intellectual history. This project will document the transmission of early Arabic poetry and analyse its vocabulary in a systematic way for the first time. For this purpose it will create an Analytical Database of Arabic Poetry. This publicly accessible database will represent a ground-breaking contribution to European research on the Arabic language and the Arabic philological heritage, which so far lacks even such fundamental tools as an etymological dictionary of the Arabic language or a complete dictionary of Classical Arabic. The database will implement comprehensive analytical tools and will serve as a reference work for wider research on Arabic literature, history and culture. Thus, the project will create an integrative research platform for the history and semantics of the Arabic language—a subject indispensable for understanding the foundations of Arab culture past and present.
Summary
This project aims to study:
• the semantic development of the vocabulary of the Arabic language,
• philological discourses on the semantic changes in the language in the classical Arabic philological tradition (8th-10th centuries A.D.), and
• the impact of Arabic philology in the wider historical and cultural context of the Judaeo-Arab neo-classical heritage (12th-13th centuries A.D.) and Christian-Arab intellectual history on the eve of modernity (19th century A.D.).
The project will explore the universal cultural significance and the pivotal role of language consciousness in the history of Arab culture. It will introduce a new dimension into the existing research on the Arabic language and Arabic philology, which until now have been studied without any comprehensive cultural and social contextualisation. The project will focus on the process of the transmission of Arabic poetry, which provides detailed evidence of the development of Arabic philological thought and its universal significance for the theological, philosophical, historical and linguistic discourses of Arab intellectual history. This project will document the transmission of early Arabic poetry and analyse its vocabulary in a systematic way for the first time. For this purpose it will create an Analytical Database of Arabic Poetry. This publicly accessible database will represent a ground-breaking contribution to European research on the Arabic language and the Arabic philological heritage, which so far lacks even such fundamental tools as an etymological dictionary of the Arabic language or a complete dictionary of Classical Arabic. The database will implement comprehensive analytical tools and will serve as a reference work for wider research on Arabic literature, history and culture. Thus, the project will create an integrative research platform for the history and semantics of the Arabic language—a subject indispensable for understanding the foundations of Arab culture past and present.
Max ERC Funding
1 499 507 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym ArtHistCEE
Project Art Historiographies in Central and Eastern EuropeAn Inquiry from the Perspective of Entangled Histories
Researcher (PI) Ada HAJDU
Host Institution (HI) FUNDATIA NOUA EUROPA
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary Our project proposes a fragmentary account of the art histories produced in present-day Poland, Hungary, Slovakia, Romania, Bulgaria and Serbia between 1850 and 1950, from an entangled histories perspective. We will look at the relationships between the art histories produced in these countries and the art histories produced in Western Europe. But, more importantly, we will investigate how the art histories written in the countries mentioned above resonate with each other, either proposing conflicting interpretations of the past, or ignoring uncomfortable competing discourses. We will investigate the art histories written between 1850 and 1950 because we are interested in how art history contributed to nation building discourses. Therefore, we will focus on those art histories that concur to nationalising the past. Our project is articulated around three crucial concepts – periodisation, style and influence – set in the context of relevant contemporary historiographies produced in Western Europe, and analysing the entanglements with competing historiographies in each of the countries considered. We will focus on two main issues: 1. How did Central and Eastern European art historians adopt, adapt and respond to theoretical and methodological issues developed elsewhere, and 2. What are the periodisations of art produced on the territory of Central and Eastern European countries; what are the theoretical and methodological strategies for conceptualising local styles; and how was the concept of influence used in establishing hierarchical relationships. Researching the conceptualisation of a theoretical framework that would accommodate the artistic production of the past will show the difficulties in dealing with a complex reality without simplifying and essentializing it along ideological lines. The research will also show that the three concepts that we focus on are not neutral or strictly descriptive, and that their use in art history needs to be reconsidered.
Summary
Our project proposes a fragmentary account of the art histories produced in present-day Poland, Hungary, Slovakia, Romania, Bulgaria and Serbia between 1850 and 1950, from an entangled histories perspective. We will look at the relationships between the art histories produced in these countries and the art histories produced in Western Europe. But, more importantly, we will investigate how the art histories written in the countries mentioned above resonate with each other, either proposing conflicting interpretations of the past, or ignoring uncomfortable competing discourses. We will investigate the art histories written between 1850 and 1950 because we are interested in how art history contributed to nation building discourses. Therefore, we will focus on those art histories that concur to nationalising the past. Our project is articulated around three crucial concepts – periodisation, style and influence – set in the context of relevant contemporary historiographies produced in Western Europe, and analysing the entanglements with competing historiographies in each of the countries considered. We will focus on two main issues: 1. How did Central and Eastern European art historians adopt, adapt and respond to theoretical and methodological issues developed elsewhere, and 2. What are the periodisations of art produced on the territory of Central and Eastern European countries; what are the theoretical and methodological strategies for conceptualising local styles; and how was the concept of influence used in establishing hierarchical relationships. Researching the conceptualisation of a theoretical framework that would accommodate the artistic production of the past will show the difficulties in dealing with a complex reality without simplifying and essentializing it along ideological lines. The research will also show that the three concepts that we focus on are not neutral or strictly descriptive, and that their use in art history needs to be reconsidered.
Max ERC Funding
1 192 250 €
Duration
Start date: 2018-10-01, End date: 2023-09-30