Project acronym 3D-FNPWriting
Project Unprecedented spatial control of porosity and functionality in nanoporous membranes through 3D printing and microscopy for polymer writing
Researcher (PI) Annette ANDRIEU-BRUNSEN
Host Institution (HI) TECHNISCHE UNIVERSITAT DARMSTADT
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Summary
Membranes are key materials in our life. Nature offers high performance membranes relying on a parallel local regulation of nanopore structure, functional placement, membrane composition and architecture. Existing technological membranes are key materials in separation, recycling, sensing, energy conversion, being essential components for a sustainable future. But their performance is far away from their natural counterparts. One reason for this performance gap is the lack of 3D nanolocal control in membrane design. This applies to each individual nanopore but as well to the membrane architecture. This proposal aims to implement 3D printing (additive manufacturing, top down) and complex near-field and total internal reflection (TIR) high resolution microscopy induced polymer writing (bottom up) to nanolocally control in hierarchical nanoporous membranes spatially and independent of each other: porosity, pore functionalization, membrane architecture, composition. This disruptive technology platform will make accessible to date unachieved, highly accurate asymmetric nanopores and multifunctional, hierarchical membrane architecture/ composition and thus highly selective, directed, transport with tuneable rates. 3D-FNPWriting will demonstrate this for the increasing class of metal nanoparticle/ salt pollutants aiming for tuneable, selective, directed transport based monitoring and recycling instead of size-based filtration, accumulation into sewerage and distribution into nature. Specifically, the potential of this disruptive technology with respect to transport design will be demonstrated for a) a 3D-printed in-situ functionalized nanoporous fiber architecture and b) a printed, nanolocally near-field and TIR-microscopy polymer functionalized membrane representing a thin separation layer. This will open systematic understanding of nanolocal functional control on transport and new perspectives in water/ energy management for future smart industry/ homes.
Max ERC Funding
1 499 844 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ABRSEIST
Project Antibiotic Resistance: Socio-Economic Determinants and the Role of Information and Salience in Treatment Choice
Researcher (PI) Hannes ULLRICH
Host Institution (HI) DEUTSCHES INSTITUT FUR WIRTSCHAFTSFORSCHUNG DIW (INSTITUT FUR KONJUNKTURFORSCHUNG) EV
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Summary
Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Max ERC Funding
1 498 920 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ANTICIPATE
Project Anticipatory Human-Computer Interaction
Researcher (PI) Andreas BULLING
Host Institution (HI) UNIVERSITAET STUTTGART
Call Details Starting Grant (StG), PE6, ERC-2018-STG
Summary Even after three decades of research on human-computer interaction (HCI), current general-purpose user interfaces (UI) still lack the ability to attribute mental states to their users, i.e. they fail to understand users' intentions and needs and to anticipate their actions. This drastically restricts their interactive capabilities.
ANTICIPATE aims to establish the scientific foundations for a new generation of user interfaces that pro-actively adapt to users' future input actions by monitoring their attention and predicting their interaction intentions - thereby significantly improving the naturalness, efficiency, and user experience of the interactions. Realising this vision of anticipatory human-computer interaction requires groundbreaking advances in everyday sensing of user attention from eye and brain activity. We will further pioneer methods to predict entangled user intentions and forecast interactive behaviour with fine temporal granularity during interactions in everyday stationary and mobile settings. Finally, we will develop fundamental interaction paradigms that enable anticipatory UIs to pro-actively adapt to users' attention and intentions in a mindful way. The new capabilities will be demonstrated in four challenging cases: 1) mobile information retrieval, 2) intelligent notification management, 3) Autism diagnosis and monitoring, and 4) computer-based training.
Anticipatory human-computer interaction offers a strong complement to existing UI paradigms that only react to user input post-hoc. If successful, ANTICIPATE will deliver the first important building blocks for implementing Theory of Mind in general-purpose UIs. As such, the project has the potential to drastically improve the billions of interactions we perform with computers every day, to trigger a wide range of follow-up research in HCI as well as adjacent areas within and outside computer science, and to act as a key technical enabler for new applications, e.g. in healthcare and education.
Summary
Even after three decades of research on human-computer interaction (HCI), current general-purpose user interfaces (UI) still lack the ability to attribute mental states to their users, i.e. they fail to understand users' intentions and needs and to anticipate their actions. This drastically restricts their interactive capabilities.
ANTICIPATE aims to establish the scientific foundations for a new generation of user interfaces that pro-actively adapt to users' future input actions by monitoring their attention and predicting their interaction intentions - thereby significantly improving the naturalness, efficiency, and user experience of the interactions. Realising this vision of anticipatory human-computer interaction requires groundbreaking advances in everyday sensing of user attention from eye and brain activity. We will further pioneer methods to predict entangled user intentions and forecast interactive behaviour with fine temporal granularity during interactions in everyday stationary and mobile settings. Finally, we will develop fundamental interaction paradigms that enable anticipatory UIs to pro-actively adapt to users' attention and intentions in a mindful way. The new capabilities will be demonstrated in four challenging cases: 1) mobile information retrieval, 2) intelligent notification management, 3) Autism diagnosis and monitoring, and 4) computer-based training.
Anticipatory human-computer interaction offers a strong complement to existing UI paradigms that only react to user input post-hoc. If successful, ANTICIPATE will deliver the first important building blocks for implementing Theory of Mind in general-purpose UIs. As such, the project has the potential to drastically improve the billions of interactions we perform with computers every day, to trigger a wide range of follow-up research in HCI as well as adjacent areas within and outside computer science, and to act as a key technical enabler for new applications, e.g. in healthcare and education.
Max ERC Funding
1 499 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ANYON
Project Engineering and exploring anyonic quantum gases
Researcher (PI) Christof WEITENBERG
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.
Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.
Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.
In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Summary
This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.
Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.
Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.
In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Max ERC Funding
1 497 500 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AutoCPS
Project Automated Synthesis of Cyber-Physical Systems: A Compositional Approach
Researcher (PI) Majid ZAMANI
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Summary
Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.
In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.
Max ERC Funding
1 470 800 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BRAINSYNC
Project Brain-environment synchrony and the auditory perception problem
Researcher (PI) Molly HENRY
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH4, ERC-2018-STG
Summary Synchronization of brain rhythms to the rhythms of sounds is a foundational mechanism for auditory perception. However, we know very little about why brain–environment synchrony might fail, leading to auditory perception problems like impaired speech comprehension that negatively impact quality of life. The proposed research program fills this knowledge gap in three stages: 1) Predicting auditory perception, and individual differences thereof, from the fit between neural dynamics and environment; 2) Perturbing the relationship between brain and environment to experimentally test the limits of and protective factors for brain–environment synchronization; 3) Translating gained knowledge to understand age-related dysfunctions in brain–environment synchrony and auditory perception. Stage 1 uses behavioural and neural properties of neural oscillators – brain regions and networks that generate rhythmic neural activity – to predict individual differences in brain–environment synchronization. Stage 2 assesses when and why auditory perception fails, and how auditory perception might be insulated by good brain–environment fit and neural flexibility, by challenging the brain’s ability to adapt to auditory rhythms. Stage 2 has strong potential to provide insight into compensatory listening strategies that may be adopted when neural entrainment is effortful or impossible. Stage 3 places special emphasis on listening difficulties that develop with age, and tests the hypotheses that 1) speech comprehension difficulties stem from reduced neural entrainment in older age, and 2) reduced entrainment for older adults results from age-related changes to neural flexibility. Noninvasive brain stimulation will be used to temporarily remedy these deficits by improving brain–environment synchrony. The research program will account for much currently unexplained individual variance in auditory perception, and will inspire novel interventions to support auditory perception in advancing age.
Summary
Synchronization of brain rhythms to the rhythms of sounds is a foundational mechanism for auditory perception. However, we know very little about why brain–environment synchrony might fail, leading to auditory perception problems like impaired speech comprehension that negatively impact quality of life. The proposed research program fills this knowledge gap in three stages: 1) Predicting auditory perception, and individual differences thereof, from the fit between neural dynamics and environment; 2) Perturbing the relationship between brain and environment to experimentally test the limits of and protective factors for brain–environment synchronization; 3) Translating gained knowledge to understand age-related dysfunctions in brain–environment synchrony and auditory perception. Stage 1 uses behavioural and neural properties of neural oscillators – brain regions and networks that generate rhythmic neural activity – to predict individual differences in brain–environment synchronization. Stage 2 assesses when and why auditory perception fails, and how auditory perception might be insulated by good brain–environment fit and neural flexibility, by challenging the brain’s ability to adapt to auditory rhythms. Stage 2 has strong potential to provide insight into compensatory listening strategies that may be adopted when neural entrainment is effortful or impossible. Stage 3 places special emphasis on listening difficulties that develop with age, and tests the hypotheses that 1) speech comprehension difficulties stem from reduced neural entrainment in older age, and 2) reduced entrainment for older adults results from age-related changes to neural flexibility. Noninvasive brain stimulation will be used to temporarily remedy these deficits by improving brain–environment synchrony. The research program will account for much currently unexplained individual variance in auditory perception, and will inspire novel interventions to support auditory perception in advancing age.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym CATALIGHT
Project Exploiting Energy Flow in Plasmonic-Catalytic Colloids
Researcher (PI) Emiliano CORTÉS
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.
CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.
The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.
Summary
The aim of CATALIGHT is to use sunlight as a source of energy in order to trigger chemical reactions by harvesting photons with plasmonic nanoparticles and channelling the energy into catalytic materials. Plasmonic-catalytic devices would allow efficient harvest, transport, and injection of solar energy into molecules. To achieve this, imaging the energy flow at the nanoscale will be crucial for establishing the true potential of plasmonics, both in the context of yielding fundamental knowledge about the light-into-chemical energy conversion processes, and for moving from active towards efficient reactive devices within nanoscale environments.
CATALIGHT has roots in three underlying components, making this project an interwoven effort to break new grounds in a crucial field for the further development of nanoscale energy manipulation: A) Super-resolution imaging of the energy-flow at the nanoscale – with a view to unravel the most efficient mechanisms to guide solar energy into catalytic materials using plasmonic structures as photon harvesters. B) Scaling-up this process through the fabrication of hierarchical photocatalytic colloids – using image-learning for the design of colloidal sources for energy manipulation. C) Light-into-chemical energy conversion – boosting efficiencies in environmental and industrial catalytic processes using tailored photocatalysts.
The outcomes of this project will not only yield a substantial amount of fundamental knowledge in these crucial areas for the further development of the field, but also provide directly exploitable results for the applied sciences, particularly photocatalysis and fuel cells.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CoDisEASe
Project Communicable Disease in the Age of Seafaring
Researcher (PI) Kirsten BOS
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary Infectious diseases have had an intimate history with humans and have shaped our genetic makeup through generating strong selective pressures. Although disease emergence and epidemics occur on a local scale, human interrelationships formed through travel and trade can lead to exchanges of pathogenic communities. While such transfers were common among the interconnected Eurasian and North African cultures throughout most of human history, the rest of the world experienced relative ecological autonomy. The terminal Pleistocene witnessed the colonisation of vast territory on the American continents, after which interactions between New and Old World peoples were limited for millennia by geographical barriers. These ecological worlds collided at the end of the fifteenth century, when improvements in navigation and the discovery of the Americas by Europeans permitted regular contact and plentiful opportunities for biological interchange. The identities of most diseases that played leading roles during this period of exchange are known, though details on the directions of their movement and temporal introductions remain the subject of scholarly debate. The work programme presented here will use an underexplored data source – ancient pathogen genomes – to identify infectious insults in pre- and post-contact New and Old World skeletal series, thus enabling an evaluation of changing disease landscapes at contact. Complementary to this goal, genomic loci for human immunity genes will be interrogated, thus permitting quantitative evaluations of disease adaptation. Ancient molecular data will be acquired through use of the most sensitive and up to date methods in the field of ancient DNA with the aim of bringing diseases not easily seen from skeletal morphology or historical documents to light in clear detail. This will permit an unprecedented resolution of past disease experience and host-pathogen interactions during this dynamic period of global ecological unification.
Summary
Infectious diseases have had an intimate history with humans and have shaped our genetic makeup through generating strong selective pressures. Although disease emergence and epidemics occur on a local scale, human interrelationships formed through travel and trade can lead to exchanges of pathogenic communities. While such transfers were common among the interconnected Eurasian and North African cultures throughout most of human history, the rest of the world experienced relative ecological autonomy. The terminal Pleistocene witnessed the colonisation of vast territory on the American continents, after which interactions between New and Old World peoples were limited for millennia by geographical barriers. These ecological worlds collided at the end of the fifteenth century, when improvements in navigation and the discovery of the Americas by Europeans permitted regular contact and plentiful opportunities for biological interchange. The identities of most diseases that played leading roles during this period of exchange are known, though details on the directions of their movement and temporal introductions remain the subject of scholarly debate. The work programme presented here will use an underexplored data source – ancient pathogen genomes – to identify infectious insults in pre- and post-contact New and Old World skeletal series, thus enabling an evaluation of changing disease landscapes at contact. Complementary to this goal, genomic loci for human immunity genes will be interrogated, thus permitting quantitative evaluations of disease adaptation. Ancient molecular data will be acquired through use of the most sensitive and up to date methods in the field of ancient DNA with the aim of bringing diseases not easily seen from skeletal morphology or historical documents to light in clear detail. This will permit an unprecedented resolution of past disease experience and host-pathogen interactions during this dynamic period of global ecological unification.
Max ERC Funding
1 490 043 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym COINFLIP
Project Coupled Organic Inorganic Nanostructures for Fast, Light-Induced Data Processing
Researcher (PI) Marcus Scheele
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.
Summary
The main objective of this project is to design optical switches with a response time < 5 ps, a switching energy < 1 fJ/bit and compatibility with silicon technology to excel in high-speed data processing at low heat dissipation. This will be pursued by combining the chemistry of inorganic, nanocrystalline colloids and organic semiconductor molecules to fabricate thin films of organic-inorganic hybrid nanostructures. Optical switches play a pivotal role in modern data processing based on silicon photonics, where they control the interface between photonic optical fibers used for data transmission and electronic processing units for computing. Data transfer across this interface is slow compared to that in optical interconnects and high-speed silicon transistors, such that faster optical switching accelerates the overall speed of data processing of the system as a whole. By modifying the surface of the inorganic nanocrystals with conductive molecular linkers and self-assembly into macroscopic solid state materials, new electronic and photonic properties arise due to charge transfer at the organic/inorganic interface. The multiple optical resonances in these hybrid materials result in strong optoelectronic interactions with external light beams, which are exploited for converting photonic into electronic signals at unprecedented speed. A key concept here is an activated absorption mechanism, in which the nanocrystals act as sensitizers with short-lived excited states, which are activated by a first optical pump beam. Efficient charge transfer at the organic/inorganic interface temporarily creates additional resonances in the molecular linkers, which may be probed by a second optical beam for as long as the sensitizer is in its excited state. Utilizing nanocrystals with excited state lifetimes < 5ps will reward ultrafast response times to pave the way for novel optical switches and high-speed data processing rates for silicon photonics.
Max ERC Funding
1 497 375 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym COTOFLEXI
Project Computational Modelling, Topological Optimization and Design of Flexoelectric Nano Energy Harvesters
Researcher (PI) Xiaoying ZHUANG
Host Institution (HI) GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary Flexoelectricity is the generation of electric polarization under mechanical strain gradient or mechanical deformation due to the electric field gradient (converse flexo). It is a more general phenomenon than the linear change in polarization due to stress, the piezoelectric effect. Flexoelectricity exists in a wider range of centrosymmetric materials especially nontoxic materials useful for biomedical application. It grows dominantly in energy density at submicro- or nanoscale enabling self-powered nano devices such as body implants and small-scale wireless sensors. Among the emerging applications of flexoelectricity, energy harvesters are the basic front devices of wide technological impact. Despite the advantages offered by flexoelectricity, research in this field is still in germination. Experiments are limited in measuring, explaining and quantifying some key phenomena. Materials engineering and engineering of strain are the key challenges to bring energy harvesting structures/systems to become a viable technology. Accomplishment of this task pressingly requires a robust modelling tool that can assist the development of flexoelectric energy harvesters. Hence, the aim of the project is to develop a computational framework to support the characterization, design, virtual testing and optimization of the next generation nano energy harvesters. It will be able to (1) predict the energy conversion efficiency and output voltage influenced by layout and surface effects of structures in 3D, (2) to virtually test the performance with various vibrational dynamic conditions, and (3) to break through current designs of simple geometry for flexoelectric structures by optimization considering manufacturing constraints. Innovative metamaterial/3D folding energy harvesters expectantly outperforming current piezoelectric energy harvesters of the same size will be manufactured and tested.
Summary
Flexoelectricity is the generation of electric polarization under mechanical strain gradient or mechanical deformation due to the electric field gradient (converse flexo). It is a more general phenomenon than the linear change in polarization due to stress, the piezoelectric effect. Flexoelectricity exists in a wider range of centrosymmetric materials especially nontoxic materials useful for biomedical application. It grows dominantly in energy density at submicro- or nanoscale enabling self-powered nano devices such as body implants and small-scale wireless sensors. Among the emerging applications of flexoelectricity, energy harvesters are the basic front devices of wide technological impact. Despite the advantages offered by flexoelectricity, research in this field is still in germination. Experiments are limited in measuring, explaining and quantifying some key phenomena. Materials engineering and engineering of strain are the key challenges to bring energy harvesting structures/systems to become a viable technology. Accomplishment of this task pressingly requires a robust modelling tool that can assist the development of flexoelectric energy harvesters. Hence, the aim of the project is to develop a computational framework to support the characterization, design, virtual testing and optimization of the next generation nano energy harvesters. It will be able to (1) predict the energy conversion efficiency and output voltage influenced by layout and surface effects of structures in 3D, (2) to virtually test the performance with various vibrational dynamic conditions, and (3) to break through current designs of simple geometry for flexoelectric structures by optimization considering manufacturing constraints. Innovative metamaterial/3D folding energy harvesters expectantly outperforming current piezoelectric energy harvesters of the same size will be manufactured and tested.
Max ERC Funding
1 499 938 €
Duration
Start date: 2019-08-01, End date: 2024-07-31