Project acronym CONSTAMIS
Project Connecting Statistical Mechanics and Conformal Field Theory: an Ising Model Perspective
Researcher (PI) CLEMENT HONGLER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The developments of Statistical Mechanics and Quantum Field Theory are among the major achievements of the 20th century's science. During the second half of the century, these two subjects started to converge. In two dimensions, this resulted in a most remarkable chapter of mathematical physics: Conformal Field Theory (CFT) reveals deep structures allowing for extremely precise investigations, making such theories powerful building blocks of many subjects of mathematics and physics. Unfortunately, this convergence has remained non-rigorous, leaving most of the spectacular field-theoretic applications to Statistical Mechanics conjectural.
About 15 years ago, several mathematical breakthroughs shed new light on this picture. The development of SLE curves and discrete complex analysis has enabled one to connect various statistical mechanics models with conformally symmetric processes. Recently, major progress was made on a key statistical mechanics model, the Ising model: the connection with SLE was established, and many formulae predicted by CFT were proven.
Important advances towards connecting Statistical Mechanics and CFT now appear possible. This is the goal of this proposal, which is organized in three objectives:
(I) Build a deep correspondence between the Ising model and CFT: reveal clear links between the objects and structures arising in the Ising and CFT frameworks.
(II) Gather the insights of (I) to study new connections to CFT, particularly for minimal models, current algebras and parafermions.
(III) Combine (I) and (II) to go beyond conformal symmetry: link the Ising model with massive integrable field theories.
The aim is to build one of the first rigorous bridges between Statistical Mechanics and CFT. It will help to close the gap between physical derivations and mathematical theorems. By linking the deep structures of CFT to concrete models that are applicable in many subjects, it will be potentially useful to theoretical and applied scientists.
Summary
The developments of Statistical Mechanics and Quantum Field Theory are among the major achievements of the 20th century's science. During the second half of the century, these two subjects started to converge. In two dimensions, this resulted in a most remarkable chapter of mathematical physics: Conformal Field Theory (CFT) reveals deep structures allowing for extremely precise investigations, making such theories powerful building blocks of many subjects of mathematics and physics. Unfortunately, this convergence has remained non-rigorous, leaving most of the spectacular field-theoretic applications to Statistical Mechanics conjectural.
About 15 years ago, several mathematical breakthroughs shed new light on this picture. The development of SLE curves and discrete complex analysis has enabled one to connect various statistical mechanics models with conformally symmetric processes. Recently, major progress was made on a key statistical mechanics model, the Ising model: the connection with SLE was established, and many formulae predicted by CFT were proven.
Important advances towards connecting Statistical Mechanics and CFT now appear possible. This is the goal of this proposal, which is organized in three objectives:
(I) Build a deep correspondence between the Ising model and CFT: reveal clear links between the objects and structures arising in the Ising and CFT frameworks.
(II) Gather the insights of (I) to study new connections to CFT, particularly for minimal models, current algebras and parafermions.
(III) Combine (I) and (II) to go beyond conformal symmetry: link the Ising model with massive integrable field theories.
The aim is to build one of the first rigorous bridges between Statistical Mechanics and CFT. It will help to close the gap between physical derivations and mathematical theorems. By linking the deep structures of CFT to concrete models that are applicable in many subjects, it will be potentially useful to theoretical and applied scientists.
Max ERC Funding
998 005 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym FLIRT
Project Fluid Flows and Irregular Transport
Researcher (PI) Gianluca Crippa
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary "Several important partial differential equations (PDEs) arising in the mathematical description of physical phenomena exhibit transport features: physical quantities are advected by velocity fields that drive the dynamics of the system. This is the case for instance for the Euler equation of fluid dynamics, for conservation laws, and for kinetic equations.
An ubiquitous feature of these phenomena is their intrinsic lack of regularity. From the mathematical point of view this stems from the nonlinearity and/or nonlocality of the PDEs. Moreover, the lack of regularity also encodes actual properties of the underlying physical systems: conservation laws develop shocks (discontinuities that propagate in time), solutions to the Euler equation exhibit rough and ""disordered"" behaviors. This irregularity is the major difficulty in the mathematical analysis of such problems, since it prevents the use of many standard methods, foremost the classical (and powerful) theory of characteristics.
For these reasons, the study in a non smooth setting of transport and continuity equations, and of flows of ordinary differential equations, is a fundamental tool to approach challenging important questions concerning these PDEs.
This project aims at establishing:
(1) deep insight into the structure of solutions of nonlinear PDEs, in particular the Euler equation and multidimensional systems of conservation laws,
(2) rigorous bounds for mixing phenomena in fluid flows, phenomena for which giving a precise mathematical formulation is extremely challenging.
The unifying factor of this proposal is that the analysis will rely on major advances in the theory of flows of ordinary differential equations in a non smooth setting, thus providing a robust formulation via characteristics for the PDEs under consideration. The guiding thread is the crucial role of geometric measure theory techniques, which are extremely efficient to describe and investigate irregular phenomena."
Summary
"Several important partial differential equations (PDEs) arising in the mathematical description of physical phenomena exhibit transport features: physical quantities are advected by velocity fields that drive the dynamics of the system. This is the case for instance for the Euler equation of fluid dynamics, for conservation laws, and for kinetic equations.
An ubiquitous feature of these phenomena is their intrinsic lack of regularity. From the mathematical point of view this stems from the nonlinearity and/or nonlocality of the PDEs. Moreover, the lack of regularity also encodes actual properties of the underlying physical systems: conservation laws develop shocks (discontinuities that propagate in time), solutions to the Euler equation exhibit rough and ""disordered"" behaviors. This irregularity is the major difficulty in the mathematical analysis of such problems, since it prevents the use of many standard methods, foremost the classical (and powerful) theory of characteristics.
For these reasons, the study in a non smooth setting of transport and continuity equations, and of flows of ordinary differential equations, is a fundamental tool to approach challenging important questions concerning these PDEs.
This project aims at establishing:
(1) deep insight into the structure of solutions of nonlinear PDEs, in particular the Euler equation and multidimensional systems of conservation laws,
(2) rigorous bounds for mixing phenomena in fluid flows, phenomena for which giving a precise mathematical formulation is extremely challenging.
The unifying factor of this proposal is that the analysis will rely on major advances in the theory of flows of ordinary differential equations in a non smooth setting, thus providing a robust formulation via characteristics for the PDEs under consideration. The guiding thread is the crucial role of geometric measure theory techniques, which are extremely efficient to describe and investigate irregular phenomena."
Max ERC Funding
1 009 351 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym GRAPHCPX
Project A graph complex valued field theory
Researcher (PI) Thomas Hans Willwacher
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of the proposed project is to create a universal (AKSZ type) topological field theory with values in graph complexes, capturing the rational homotopy types of manifolds, configuration and embedding spaces.
If successful, such a theory will unite certain areas of mathematical physics, topology, homological algebra and algebraic geometry. More concretely, from the physical viewpoint it would give a precise topological interpretation of a class of well studied topological field theories, as opposed to the current state of the art, in which these theories are defined by giving formulae without guarantees on the non-triviality of the produced invariants.
From the topological viewpoint such a theory will provide new tools to study much sought after objects like configuration and embedding spaces, and tentatively also diffeomorphism groups, through small combinatorial models given by Feynman diagrams. In particular, this will unite and extend existing graphical models of configuration and embedding spaces due to Kontsevich, Lambrechts, Volic, Arone, Turchin and others.
From the homological algebra viewpoint a field theory as above provides a wealth of additional algebraic structures on the graph complexes, which are some of the most central and most mysterious objects in the field.
Such algebraic structures are expected to yield constraints on the graph cohomology, as well as ways to construct series of previously unknown classes.
Summary
The goal of the proposed project is to create a universal (AKSZ type) topological field theory with values in graph complexes, capturing the rational homotopy types of manifolds, configuration and embedding spaces.
If successful, such a theory will unite certain areas of mathematical physics, topology, homological algebra and algebraic geometry. More concretely, from the physical viewpoint it would give a precise topological interpretation of a class of well studied topological field theories, as opposed to the current state of the art, in which these theories are defined by giving formulae without guarantees on the non-triviality of the produced invariants.
From the topological viewpoint such a theory will provide new tools to study much sought after objects like configuration and embedding spaces, and tentatively also diffeomorphism groups, through small combinatorial models given by Feynman diagrams. In particular, this will unite and extend existing graphical models of configuration and embedding spaces due to Kontsevich, Lambrechts, Volic, Arone, Turchin and others.
From the homological algebra viewpoint a field theory as above provides a wealth of additional algebraic structures on the graph complexes, which are some of the most central and most mysterious objects in the field.
Such algebraic structures are expected to yield constraints on the graph cohomology, as well as ways to construct series of previously unknown classes.
Max ERC Funding
1 162 500 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym RandMat
Project Spectral Statistics of Structured Random Matrices
Researcher (PI) Antti Kenneth Viktor KNOWLES
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), PE1, ERC-2016-STG
Summary The purpose of this proposal is a better mathematical understanding of certain classes of large random matrices. Up to very recently, random matrix theory has been mainly focused on mean-field models with independent entries. In this proposal I instead consider random matrices that incorporate some nontrivial structure. I focus on two types of structured random matrices that arise naturally in important applications and lead to a rich mathematical behaviour: (1) random graphs with fixed degrees, such as random regular graphs, and (2) random band matrices, which constitute a good model of disordered quantum Hamiltonians.
The goals are strongly motivated by the applications to spectral graph theory and quantum chaos for (1) and to the physics of conductance in disordered media for (2). Specifically, I will work in the following directions. First, derive precise bounds on the locations of the extremal eigenvalues and the spectral gap, ultimately obtaining their limiting distributions. Second, characterize the spectral statistics in the bulk of the spectrum, using both eigenvalue correlation functions on small scales and linear eigenvalue statistics on intermediate mesoscopic scales. Third, prove the delocalization of eigenvectors and derive the distribution of their components. These results will address several of the most important questions about the structured random matrices (1) and (2), such as expansion properties of random graphs, hallmarks of quantum chaos in random regular graphs, crossovers in the eigenvalue statistics of disordered conductors, and quantum diffusion.
To achieve these goals I will combine tools introduced in my previous work, such as local resampling of graphs and subdiagram resummation techniques, and in addition develop novel, robust techniques to address the more challenging goals. I expect the output of this proposal to contribute significantly to the understanding of structured random matrices.
Summary
The purpose of this proposal is a better mathematical understanding of certain classes of large random matrices. Up to very recently, random matrix theory has been mainly focused on mean-field models with independent entries. In this proposal I instead consider random matrices that incorporate some nontrivial structure. I focus on two types of structured random matrices that arise naturally in important applications and lead to a rich mathematical behaviour: (1) random graphs with fixed degrees, such as random regular graphs, and (2) random band matrices, which constitute a good model of disordered quantum Hamiltonians.
The goals are strongly motivated by the applications to spectral graph theory and quantum chaos for (1) and to the physics of conductance in disordered media for (2). Specifically, I will work in the following directions. First, derive precise bounds on the locations of the extremal eigenvalues and the spectral gap, ultimately obtaining their limiting distributions. Second, characterize the spectral statistics in the bulk of the spectrum, using both eigenvalue correlation functions on small scales and linear eigenvalue statistics on intermediate mesoscopic scales. Third, prove the delocalization of eigenvectors and derive the distribution of their components. These results will address several of the most important questions about the structured random matrices (1) and (2), such as expansion properties of random graphs, hallmarks of quantum chaos in random regular graphs, crossovers in the eigenvalue statistics of disordered conductors, and quantum diffusion.
To achieve these goals I will combine tools introduced in my previous work, such as local resampling of graphs and subdiagram resummation techniques, and in addition develop novel, robust techniques to address the more challenging goals. I expect the output of this proposal to contribute significantly to the understanding of structured random matrices.
Max ERC Funding
1 257 442 €
Duration
Start date: 2017-01-01, End date: 2021-12-31