Project acronym 3DWATERWAVES
Project Mathematical aspects of three-dimensional water waves with vorticity
Researcher (PI) Erik Torsten Wahlén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Summary
The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Max ERC Funding
1 203 627 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym AcetyLys
Project Unravelling the role of lysine acetylation in the regulation of glycolysis in cancer cells through the development of synthetic biology-based tools
Researcher (PI) Eyal Arbely
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Summary
Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Max ERC Funding
1 499 375 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ACO
Project The Proceedings of the Ecumenical Councils from Oral Utterance to Manuscript Edition as Evidence for Late Antique Persuasion and Self-Representation Techniques
Researcher (PI) Peter Alfred Riedlberger
Host Institution (HI) OTTO-FRIEDRICH-UNIVERSITAET BAMBERG
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Summary
The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Max ERC Funding
1 497 250 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BINDING FIBRES
Project Soluble dietary fibre: unraveling how weak bonds have a strong impact on function
Researcher (PI) Laura Nyström
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Summary
Dietary fibres are recognized for their health promoting properties; nevertheless, many of the physicochemical mechanisms behind these effects remain poorly understood. While it is understood that dietary fibres can associate with small molecules influencing, both positively or negatively their absorption, the molecular mechanism, by which these associations take place, have yet to be elucidated We propose a study of the binding in soluble dietary fibres at a molecular level to establish binding constants for various fibres and nutritionally relevant ligands. The interactions between fibres and target compounds may be quite weak, but still have a major impact on the bioavailability. To gain insight to the binding mechanisms at a level of detail that has not earlier been achieved, we will apply novel combinations of analytical techniques (MS, NMR, EPR) and both natural as well as synthetic probes to elucidate the associations in these complexes from macromolecular to atomic level. Glucans, xyloglucans and galactomannans will serve as model soluble fibres, representative of real food systems, allowing us to determine their binding constants with nutritionally relevant micronutrients, such as monosaccharides, bile acids, and metals. Furthermore, we will examine supramolecular interactions between fibre strands to evaluate possible contribution of several fibre strands to the micronutrient associations. At the atomic level, we will use complementary spectroscopies to identify the functional groups and atoms involved in the bonds between fibres and the ligands. The proposal describes a unique approach to quantify binding of small molecules by dietary fibres, which can be translated to polysaccharide interactions with ligands in a broad range of biological systems and disciplines. The findings from this study may further allow us to predictably utilize fibres in functional foods, which can have far-reaching consequences in human nutrition, and thereby also public health.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym BUMP
Project BETTER UNDERSTANDING the METAPHYSICS of PREGNANCY
Researcher (PI) Elisabeth Marjolijn Kingma
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary Every single human is the product of a pregnancy: an approximately nine-month period during which a foetus develops within its mother’s body. Yet pregnancy has not been a traditional focus in philosophy. That is remarkable, for two reasons:
First, because pregnancy presents fascinating philosophical problems: what, during the pregnancy, is the nature of the relationship between the foetus and the maternal organism? What is the relationship between the pregnant organism and the later baby? And when does one person or organism become two?
Second, because so many topics immediately adjacent to or involved in pregnancy have taken centre stage in philosophical enquiry. Examples include questions about personhood, foetuses, personal identity and the self.
This project launches the metaphysics of pregnancy as an important and fundamental area of philosophical research.
The core aims of the project are:
(1) to develop a philosophically sophisticated account of human pregnancy and birth, and the entities involved in this, that is attentive to our best empirical understanding of human reproductive biology;
(2) to articulate the metaphysics of organisms, persons and selves in a way that acknowledges the details of how we come into existence; and
(3) to start the process of rewriting the legal, social and moral language we use to classify ourselves and our actions, so that it is compatible with and can accommodate the nature of pregnancy.
The project will investigate these questions in the context of a range of philosophical sub disciplines, including analytic metaphysics, philosophy of biology and feminist philosophy, and in close dialogue with our best empirical understanding of the life sciences – most notably physiology.
Summary
Every single human is the product of a pregnancy: an approximately nine-month period during which a foetus develops within its mother’s body. Yet pregnancy has not been a traditional focus in philosophy. That is remarkable, for two reasons:
First, because pregnancy presents fascinating philosophical problems: what, during the pregnancy, is the nature of the relationship between the foetus and the maternal organism? What is the relationship between the pregnant organism and the later baby? And when does one person or organism become two?
Second, because so many topics immediately adjacent to or involved in pregnancy have taken centre stage in philosophical enquiry. Examples include questions about personhood, foetuses, personal identity and the self.
This project launches the metaphysics of pregnancy as an important and fundamental area of philosophical research.
The core aims of the project are:
(1) to develop a philosophically sophisticated account of human pregnancy and birth, and the entities involved in this, that is attentive to our best empirical understanding of human reproductive biology;
(2) to articulate the metaphysics of organisms, persons and selves in a way that acknowledges the details of how we come into existence; and
(3) to start the process of rewriting the legal, social and moral language we use to classify ourselves and our actions, so that it is compatible with and can accommodate the nature of pregnancy.
The project will investigate these questions in the context of a range of philosophical sub disciplines, including analytic metaphysics, philosophy of biology and feminist philosophy, and in close dialogue with our best empirical understanding of the life sciences – most notably physiology.
Max ERC Funding
1 273 290 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym COSMO_SIMS
Project Astrophysics for the Dark Universe: Cosmological simulations in the context of dark matter and dark energy research
Researcher (PI) Oliver Jens Hahn
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2015-STG
Summary The objective of this ambitious research proposal is to push forward the frontier of computational cosmology by significantly improving the precision of numerical models on par with the increasing richness and depth of surveys that aim to shed light on the nature of dark matter and dark energy.
Using new phase-space techniques for the simulation and analysis of dark matter, completely new insights into its dynamics are possible. They allow, for the first time, the accurate simulation of dark matter cosmologies with suppressed small-scale power without artificial fragmentation. Using such techniques, I will establish highly accurate predictions for the properties of dark matter and baryons on small scales and investigate the formation of the first galaxies in non-CDM cosmologies.
Baryonic effects on cosmological observables are a severe limiting factor in interpreting cosmological measurements. I will investigate their impact by identifying the relevant astrophysical processes in relation to the multi-wavelength properties of galaxy clusters and the galaxies they host. This will be enabled by a statistical set of zoom simulations where it is possible to study how these properties correlate with one another, with the assembly history, and how we can derive better models for unresolved baryonic processes in cosmological simulations and thus, ultimately, how we can improve the power of cosmological surveys.
Finally, I will develop a completely unified framework for precision cosmological initial conditions (ICs) that is scalable to both the largest simulations and the highest resolution zoom simulations. Bringing ICs into the ‘cloud’ will enable new statistical studies using zoom simulations and increase the reproducibility of simulations within the community.
My previous work in developing most of the underlying techniques puts me in an excellent position to lead a research group that is able to successfully approach such a wide-ranging and ambitious project.
Summary
The objective of this ambitious research proposal is to push forward the frontier of computational cosmology by significantly improving the precision of numerical models on par with the increasing richness and depth of surveys that aim to shed light on the nature of dark matter and dark energy.
Using new phase-space techniques for the simulation and analysis of dark matter, completely new insights into its dynamics are possible. They allow, for the first time, the accurate simulation of dark matter cosmologies with suppressed small-scale power without artificial fragmentation. Using such techniques, I will establish highly accurate predictions for the properties of dark matter and baryons on small scales and investigate the formation of the first galaxies in non-CDM cosmologies.
Baryonic effects on cosmological observables are a severe limiting factor in interpreting cosmological measurements. I will investigate their impact by identifying the relevant astrophysical processes in relation to the multi-wavelength properties of galaxy clusters and the galaxies they host. This will be enabled by a statistical set of zoom simulations where it is possible to study how these properties correlate with one another, with the assembly history, and how we can derive better models for unresolved baryonic processes in cosmological simulations and thus, ultimately, how we can improve the power of cosmological surveys.
Finally, I will develop a completely unified framework for precision cosmological initial conditions (ICs) that is scalable to both the largest simulations and the highest resolution zoom simulations. Bringing ICs into the ‘cloud’ will enable new statistical studies using zoom simulations and increase the reproducibility of simulations within the community.
My previous work in developing most of the underlying techniques puts me in an excellent position to lead a research group that is able to successfully approach such a wide-ranging and ambitious project.
Max ERC Funding
1 471 382 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CREWS
Project Contexts of and Relations between Early Writing Systems
Researcher (PI) Philippa Mary Steele
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary Contexts of and Relations between Early Writing Systems
This project takes an innovative and interdisciplinary approach to the history of writing, redressing lingering problems that have hampered previous research and developing new methodologies for studying scripts and their social context. The staff on the project will work on specific case studies relating to inscriptions of the ancient Aegean, Eastern Mediterranean and Levant (c.2000-600 BC), developing a new and much deeper understanding of writing, literacy and social and cultural interrelations in the area than has ever been possible via the often out-dated traditional methods usually applied to these data. The focus will be on enriching our understanding of both linguistic and social aspects of the borrowing and propagation of writing. This planned research has the potential to change the way we think about writing systems, their societal context and the ways in which ideas were exchanged in early civilisations. Published and publicised through multiple outputs and media, the results will be of importance not only to the specific chronological period and geographical area under close consideration but also to the diachronic study of relationships between population groups and the significance of such relationships for the wider field of cultural history.
Summary
Contexts of and Relations between Early Writing Systems
This project takes an innovative and interdisciplinary approach to the history of writing, redressing lingering problems that have hampered previous research and developing new methodologies for studying scripts and their social context. The staff on the project will work on specific case studies relating to inscriptions of the ancient Aegean, Eastern Mediterranean and Levant (c.2000-600 BC), developing a new and much deeper understanding of writing, literacy and social and cultural interrelations in the area than has ever been possible via the often out-dated traditional methods usually applied to these data. The focus will be on enriching our understanding of both linguistic and social aspects of the borrowing and propagation of writing. This planned research has the potential to change the way we think about writing systems, their societal context and the ways in which ideas were exchanged in early civilisations. Published and publicised through multiple outputs and media, the results will be of importance not only to the specific chronological period and geographical area under close consideration but also to the diachronic study of relationships between population groups and the significance of such relationships for the wider field of cultural history.
Max ERC Funding
1 472 519 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym DigitalMemories
Project We are all Ayotzinapa: The role of Digital Media in the Shaping of Transnational Memories on Disappearance
Researcher (PI) Silvana Mandolessi
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary The project seeks to study the role of digital media in the shaping of transnational memories on disappearance. It investigates a novel case that is in process of shaping: the disappearance of 43 students in Mexico in September 2014. The role of the new media in getting citizens’ attention and in marking a “turning point” was crucial to the upsurge of a counter-movement against the Mexican government and qualifies the event as significant for the transnational arena.
The groundbreaking aspect of the project consists in proposing a double approach:
a) a theoretical approach in which “disappearance” is considered as a particular crime that becomes a model for analyzing digital memory. Disappearance is a technology that produces a subject with a new ontological status: the disappeared are non-beings, because they are neither alive nor dead. This ontological status transgresses the clear boundaries separating life and death, past, present and future, materiality and immateriality, personal and collective spheres. “Digital memory”, i.e. a memory mediated by digital technology, is also determined by the transgression of the boundaries of given categories
b) a multidisciplinary approach situating Mexico´s case in a long transnational history of disappearance in the Hispanic World, including Argentina and Spain. This longer history seeks to compare disappearance as a mnemonic object developed in the global sphere –in social network sites as blogs, Facebook, Twitter and YouTube– in Mexico and the social performances and artistic representations –literature, photo exhibitions, and films– developed in Spain and Argentina.
The Mexican case represents a paradigm for the redefinition of the relationship between media and memory. The main output of the project will consist in constructing a theoretical model for analyzing digital mnemonic objects in the rise of networked social movements with a transnational scope.
Summary
The project seeks to study the role of digital media in the shaping of transnational memories on disappearance. It investigates a novel case that is in process of shaping: the disappearance of 43 students in Mexico in September 2014. The role of the new media in getting citizens’ attention and in marking a “turning point” was crucial to the upsurge of a counter-movement against the Mexican government and qualifies the event as significant for the transnational arena.
The groundbreaking aspect of the project consists in proposing a double approach:
a) a theoretical approach in which “disappearance” is considered as a particular crime that becomes a model for analyzing digital memory. Disappearance is a technology that produces a subject with a new ontological status: the disappeared are non-beings, because they are neither alive nor dead. This ontological status transgresses the clear boundaries separating life and death, past, present and future, materiality and immateriality, personal and collective spheres. “Digital memory”, i.e. a memory mediated by digital technology, is also determined by the transgression of the boundaries of given categories
b) a multidisciplinary approach situating Mexico´s case in a long transnational history of disappearance in the Hispanic World, including Argentina and Spain. This longer history seeks to compare disappearance as a mnemonic object developed in the global sphere –in social network sites as blogs, Facebook, Twitter and YouTube– in Mexico and the social performances and artistic representations –literature, photo exhibitions, and films– developed in Spain and Argentina.
The Mexican case represents a paradigm for the redefinition of the relationship between media and memory. The main output of the project will consist in constructing a theoretical model for analyzing digital mnemonic objects in the rise of networked social movements with a transnational scope.
Max ERC Funding
1 444 125 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym DUST-IN-THE-WIND
Project Dust in the wind — a new paradigm for inflow and outflow structures around supermassive black holes
Researcher (PI) Sebastian Florian Hoenig
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE9, ERC-2015-STG
Summary Active galactic nuclei (AGN) represent the active growing phases of supermassive black holes. For the first time, we are able to resolve the dusty gas on parsec scales and directly test our standard picture of these objects. While this “unification scheme” relates the parsec-scale IR emission with a geometrically-thick disk, I have recently found that the bulk of the dust emission comes from the polar region of the alleged disk where gas is blown out from the vicinity of the black hole. Along with these polar features, the compactness of the dust distribution seems to depend on the accretion state of the black hole. Neither of these findings have been predicted by current models and lack a physical explanation.
To explain the new observations, I proposed a revision to the AGN unification scheme that involves a dusty wind driven by radiation pressure. Depending on their masses, velocities, and frequency, such dusty winds might play a major role in self regulating AGN activity and, thus, impact the interplay between host and black hole evolution. However, as of now we do not know if these winds are ubiquitous in AGN and how they would work physically. Upon completion of the research program, I want to
• characterise the pc-scale mass distribution, its kinematics, and the connection to the accretion state of the AGN,
• have a physical explanation of the dusty wind features and constrain its impacts on the AGN environment, and
• have established dust parallax distances to several nearby AGN, as a multi-disciplinary application of the constraints on the dust distribution.
For that, I will combine the highest angular resolution observations in the IR and sub-mm to create the first pc-scale intensity, velocity, and density maps of a sample of 11 AGN. I will develop a new model that combines hydrodynamic simulations with an efficient treatment of radiative transfer to simulate dusty winds. Finally, direct distances to 12 AGN with a combined 3% precision will be measured.
Summary
Active galactic nuclei (AGN) represent the active growing phases of supermassive black holes. For the first time, we are able to resolve the dusty gas on parsec scales and directly test our standard picture of these objects. While this “unification scheme” relates the parsec-scale IR emission with a geometrically-thick disk, I have recently found that the bulk of the dust emission comes from the polar region of the alleged disk where gas is blown out from the vicinity of the black hole. Along with these polar features, the compactness of the dust distribution seems to depend on the accretion state of the black hole. Neither of these findings have been predicted by current models and lack a physical explanation.
To explain the new observations, I proposed a revision to the AGN unification scheme that involves a dusty wind driven by radiation pressure. Depending on their masses, velocities, and frequency, such dusty winds might play a major role in self regulating AGN activity and, thus, impact the interplay between host and black hole evolution. However, as of now we do not know if these winds are ubiquitous in AGN and how they would work physically. Upon completion of the research program, I want to
• characterise the pc-scale mass distribution, its kinematics, and the connection to the accretion state of the AGN,
• have a physical explanation of the dusty wind features and constrain its impacts on the AGN environment, and
• have established dust parallax distances to several nearby AGN, as a multi-disciplinary application of the constraints on the dust distribution.
For that, I will combine the highest angular resolution observations in the IR and sub-mm to create the first pc-scale intensity, velocity, and density maps of a sample of 11 AGN. I will develop a new model that combines hydrodynamic simulations with an efficient treatment of radiative transfer to simulate dusty winds. Finally, direct distances to 12 AGN with a combined 3% precision will be measured.
Max ERC Funding
1 475 171 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym EPITOOLS
Project Chemical biology approaches to unraveling the histone code
Researcher (PI) Akane Kawamura
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Posttranslational modifications on histones play crucial roles in the epigenetic regulation of eukaryotic gene expression. Chemical modifications that occur on histone tails include acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation. This chemical diversity together with the positions and combinations of these modifications give rise to complex networks of highly controlled gene expression programs. The identification and characterisation of chromatin-associated proteins (or epigenetic regulators) in recent years has advanced our understanding of the significance of these histone modifications and the regulatory outcomes in development and in disease.
The project aims to generate new classes of highly selective and potent chemical probes for epigenetic regulators, focusing on enzymes and proteins associated with methyl-lysine marks. A novel modified peptide-based discovery platform, which combines molecular, chemical, biophysical and cellular techniques, will be developed and applied. These chemical probes will be useful for biological and biomedical research, and will serve as potential starting points for therapeutic epigenetic intervention.
Summary
Posttranslational modifications on histones play crucial roles in the epigenetic regulation of eukaryotic gene expression. Chemical modifications that occur on histone tails include acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation. This chemical diversity together with the positions and combinations of these modifications give rise to complex networks of highly controlled gene expression programs. The identification and characterisation of chromatin-associated proteins (or epigenetic regulators) in recent years has advanced our understanding of the significance of these histone modifications and the regulatory outcomes in development and in disease.
The project aims to generate new classes of highly selective and potent chemical probes for epigenetic regulators, focusing on enzymes and proteins associated with methyl-lysine marks. A novel modified peptide-based discovery platform, which combines molecular, chemical, biophysical and cellular techniques, will be developed and applied. These chemical probes will be useful for biological and biomedical research, and will serve as potential starting points for therapeutic epigenetic intervention.
Max ERC Funding
1 758 846 €
Duration
Start date: 2016-04-01, End date: 2021-03-31