Project acronym 3D-REPAIR
Project Spatial organization of DNA repair within the nucleus
Researcher (PI) Evanthia Soutoglou
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Country United Kingdom
Call Details Consolidator Grant (CoG), LS2, ERC-2015-CoG
Summary Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Summary
Faithful repair of double stranded DNA breaks (DSBs) is essential, as they are at the origin of genome instability, chromosomal translocations and cancer. Cells repair DSBs through different pathways, which can be faithful or mutagenic, and the balance between them at a given locus must be tightly regulated to preserve genome integrity. Although, much is known about DSB repair factors, how the choice between pathways is controlled within the nuclear environment is not understood. We have shown that nuclear architecture and non-random genome organization determine the frequency of chromosomal translocations and that pathway choice is dictated by the spatial organization of DNA in the nucleus. Nevertheless, what determines which pathway is activated in response to DSBs at specific genomic locations is not understood. Furthermore, the impact of 3D-genome folding on the kinetics and efficiency of DSB repair is completely unknown.
Here we aim to understand how nuclear compartmentalization, chromatin structure and genome organization impact on the efficiency of detection, signaling and repair of DSBs. We will unravel what determines the DNA repair specificity within distinct nuclear compartments using protein tethering, promiscuous biotinylation and quantitative proteomics. We will determine how DNA repair is orchestrated at different heterochromatin structures using a CRISPR/Cas9-based system that allows, for the first time robust induction of DSBs at specific heterochromatin compartments. Finally, we will investigate the role of 3D-genome folding in the kinetics of DNA repair and pathway choice using single nucleotide resolution DSB-mapping coupled to 3D-topological maps.
This proposal has significant implications for understanding the mechanisms controlling DNA repair within the nuclear environment and will reveal the regions of the genome that are susceptible to genomic instability and help us understand why certain mutations and translocations are recurrent in cancer
Max ERC Funding
1 999 750 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ACoolTouch
Project Neural mechanisms of multisensory perceptual binding
Researcher (PI) James Francis Alexander Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Country Germany
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Summary
Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Max ERC Funding
1 999 877 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ALS-Networks
Project Defining functional networks of genetic causes for ALS and related neurodegenerative disorders
Researcher (PI) Edor Kabashi
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Summary
Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym AMPLIFY
Project Amplifying Human Perception Through Interactive Digital Technologies
Researcher (PI) Albrecht Schmidt
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Consolidator Grant (CoG), PE6, ERC-2015-CoG
Summary Current technical sensor systems offer capabilities that are superior to human perception. Cameras can capture a spectrum that is wider than visible light, high-speed cameras can show movements that are invisible to the human eye, and directional microphones can pick up sounds at long distances. The vision of this project is to lay a foundation for the creation of digital technologies that provide novel sensory experiences and new perceptual capabilities for humans that are natural and intuitive to use. In a first step, the project will assess the feasibility of creating artificial human senses that provide new perceptual channels to the human mind, without increasing the experienced cognitive load. A particular focus is on creating intuitive and natural control mechanisms for amplified senses using eye gaze, muscle activity, and brain signals. Through the creation of a prototype that provides mildly unpleasant stimulations in response to perceived information, the feasibility of implementing an artificial reflex will be experimentally explored. The project will quantify the effectiveness of new senses and artificial perceptual aids compared to the baseline of unaugmented perception. The overall objective is to systematically research, explore, and model new means for increasing the human intake of information in order to lay the foundation for new and improved human senses enabled through digital technologies and to enable artificial reflexes. The ground-breaking contributions of this project are (1) to demonstrate the feasibility of reliably implementing amplified senses and new perceptual capabilities, (2) to prove the possibility of creating an artificial reflex, (3) to provide an example implementation of amplified cognition that is empirically validated, and (4) to develop models, concepts, components, and platforms that will enable and ease the creation of interactive systems that measurably increase human perceptual capabilities.
Summary
Current technical sensor systems offer capabilities that are superior to human perception. Cameras can capture a spectrum that is wider than visible light, high-speed cameras can show movements that are invisible to the human eye, and directional microphones can pick up sounds at long distances. The vision of this project is to lay a foundation for the creation of digital technologies that provide novel sensory experiences and new perceptual capabilities for humans that are natural and intuitive to use. In a first step, the project will assess the feasibility of creating artificial human senses that provide new perceptual channels to the human mind, without increasing the experienced cognitive load. A particular focus is on creating intuitive and natural control mechanisms for amplified senses using eye gaze, muscle activity, and brain signals. Through the creation of a prototype that provides mildly unpleasant stimulations in response to perceived information, the feasibility of implementing an artificial reflex will be experimentally explored. The project will quantify the effectiveness of new senses and artificial perceptual aids compared to the baseline of unaugmented perception. The overall objective is to systematically research, explore, and model new means for increasing the human intake of information in order to lay the foundation for new and improved human senses enabled through digital technologies and to enable artificial reflexes. The ground-breaking contributions of this project are (1) to demonstrate the feasibility of reliably implementing amplified senses and new perceptual capabilities, (2) to prove the possibility of creating an artificial reflex, (3) to provide an example implementation of amplified cognition that is empirically validated, and (4) to develop models, concepts, components, and platforms that will enable and ease the creation of interactive systems that measurably increase human perceptual capabilities.
Max ERC Funding
1 925 250 €
Duration
Start date: 2016-07-01, End date: 2022-09-30
Project acronym ANGI
Project Adaptive significance of Non Genetic Inheritance
Researcher (PI) Benoit Francois Pujol
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation is known to depend on epigenetic variation. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to shed light on original mechanisms underlying adaptation that are an alternative to genetic selection.
Summary
Our ability to predict adaptation and the response of populations to selection is limited. Solving this issue is a fundamental challenge of evolutionary ecology with implications for applied sciences such as conservation, and agronomy. Non genetic inheritance (NGI; e.g., ecological niche transmission) is suspected to play a foremost role in adaptive evolution but such hypothesis remains untested. Using quantitative genetics in wild plant populations, experimental evolution, and epigenetics, we will assess the role of NGI in the adaptive response to selection of plant populations. The ANGI project will follow the subsequent research program: (1) Using long-term survey data, we will measure natural selection in wild populations of Antirrhinum majus within its heterogeneous array of micro-habitats. We will calculate the fitness gain provided by multiple traits and stem elongation to plants growing in bushes where they compete for light. Stem elongation is known to depend on epigenetic variation. (2) Using a statistical approach that we developed, we will estimate the quantitative genetic and non genetic heritability of traits. (3) We will identify phenotypic changes caused by fitness that are based on genetic variation and NGI and assess their respective roles in adaptive evolution. (4) In controlled conditions, we will artificially select for increased stem elongation in clonal lineages, thereby excluding DNA variation. We will quantify the non genetic response to selection and test for a quantitative epigenetic signature of selection. (5) We will build on our results to generate an inclusive theory of genetic and non genetic natural selection. ANGI builds on a confirmed expertise in selection experiments, quantitative genetics and NGI. In addition, the availability of survey data provides a solid foundation for the achievement of this project. Our ambition is to shed light on original mechanisms underlying adaptation that are an alternative to genetic selection.
Max ERC Funding
1 999 970 €
Duration
Start date: 2016-03-01, End date: 2022-02-28
Project acronym ARTIVISM
Project Art and Activism : Creativity and Performance as Subversive Forms of Political Expression in Super-Diverse Cities
Researcher (PI) Monika Salzbrunn
Host Institution (HI) UNIVERSITE DE LAUSANNE
Country Switzerland
Call Details Consolidator Grant (CoG), SH5, ERC-2015-CoG
Summary ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Summary
ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Max ERC Funding
1 999 287 €
Duration
Start date: 2016-09-01, End date: 2022-02-28
Project acronym AstroWireSyn
Project Wiring synaptic circuits with astroglial connexins: mechanisms, dynamics and impact for critical period plasticity
Researcher (PI) Nathalie Rouach
Host Institution (HI) COLLEGE DE FRANCE
Country France
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Brain information processing is commonly thought to be a neuronal performance. However recent data point to a key role of astrocytes in brain development, activity and pathology. Indeed astrocytes are now viewed as crucial elements of the brain circuitry that control synapse formation, maturation, activity and elimination. How do astrocytes exert such control is matter of intense research, as they are now known to participate in critical developmental periods as well as in psychiatric disorders involving synapse alterations. Thus unraveling how astrocytes control synaptic circuit formation and maturation is crucial, not only for our understanding of brain development, but also for identifying novel therapeutic targets.
We recently found that connexin 30 (Cx30), an astroglial gap junction subunit expressed postnatally, tunes synaptic activity via an unprecedented non-channel function setting the proximity of glial processes to synaptic clefts, essential for synaptic glutamate clearance efficacy. Our work not only reveals Cx30 as a key determinant of glial synapse coverage, but also extends the classical model of neuroglial interactions in which astrocytes are generally considered as extrasynaptic elements indirectly regulating neurotransmission. Yet the molecular mechanisms involved in such control, its dynamic regulation by activity and impact in a native developmental context are unknown. We will now address these important questions, focusing on the involvement of this novel astroglial function in wiring developing synaptic circuits.
Thus using a multidisciplinary approach we will investigate:
1) the molecular and cellular mechanisms underlying Cx30 regulation of synaptic function
2) the activity-dependent dynamics of Cx30 function at synapses
3) a role for Cx30 in wiring synaptic circuits during critical developmental periods
This ambitious project will provide essential knowledge on the molecular mechanisms underlying astroglial control of synaptic circuits.
Summary
Brain information processing is commonly thought to be a neuronal performance. However recent data point to a key role of astrocytes in brain development, activity and pathology. Indeed astrocytes are now viewed as crucial elements of the brain circuitry that control synapse formation, maturation, activity and elimination. How do astrocytes exert such control is matter of intense research, as they are now known to participate in critical developmental periods as well as in psychiatric disorders involving synapse alterations. Thus unraveling how astrocytes control synaptic circuit formation and maturation is crucial, not only for our understanding of brain development, but also for identifying novel therapeutic targets.
We recently found that connexin 30 (Cx30), an astroglial gap junction subunit expressed postnatally, tunes synaptic activity via an unprecedented non-channel function setting the proximity of glial processes to synaptic clefts, essential for synaptic glutamate clearance efficacy. Our work not only reveals Cx30 as a key determinant of glial synapse coverage, but also extends the classical model of neuroglial interactions in which astrocytes are generally considered as extrasynaptic elements indirectly regulating neurotransmission. Yet the molecular mechanisms involved in such control, its dynamic regulation by activity and impact in a native developmental context are unknown. We will now address these important questions, focusing on the involvement of this novel astroglial function in wiring developing synaptic circuits.
Thus using a multidisciplinary approach we will investigate:
1) the molecular and cellular mechanisms underlying Cx30 regulation of synaptic function
2) the activity-dependent dynamics of Cx30 function at synapses
3) a role for Cx30 in wiring synaptic circuits during critical developmental periods
This ambitious project will provide essential knowledge on the molecular mechanisms underlying astroglial control of synaptic circuits.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-10-01, End date: 2022-03-31
Project acronym ASTRUm
Project Astrophysics with Stored Highy Charged Radionuclides
Researcher (PI) Yury Litvinov
Host Institution (HI) GSI HELMHOLTZZENTRUM FUER SCHWERIONENFORSCHUNG GMBH
Country Germany
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary The main goal of ASTRUm is to employ stored and cooled radioactive ions for forefront nuclear astrophysics research. Four key experiments are proposed to be conducted at GSI in Darmstadt, which holds the only facility to date capable of storing highly charged radionuclides in the required element and energy range. The proposed experiments can hardly be conducted by any other technique or method.
The weak decay matrix element for the transition between the 2.3 keV state in 205Pb and the ground state of 205Tl will be measured via the bound state beta decay measurement of fully ionized 205Tl81+. This will provide the required data to determine the solar pp-neutrino flux integrated over the last 5 million years and will allow us to unveil the astrophysical conditions prior to the formation of the solar system.
The measurements of the alpha-decay width of the 4.033 MeV excited state in 19Ne will allow us to constrain the conditions for the ignition of the rp-process in X-ray bursters.
ASTRUm will open a new field by enabling for the first time measurements of proton- and alpha-capture reaction cross-sections on radioactive nuclei of interest for the p-process of nucleosynthesis.
Last but not least, broad band mass and half-life measurements in a ring is the only technique to precisely determine these key nuclear properties for nuclei with half-lives as short as a millisecond and production rates of below one ion per day.
To accomplish these measurements with highest efficiency, sensitivity and precision, improved detector systems will be developed within ASTRUm. Possible applications of these systems go beyond ASTRUm objectives and will be used in particular in accelerator physics.
The instrumentation and experience gained within ASTRUm will be indispensable for planning the future, next generation storage ring projects, which are launched or proposed at several radioactive ion beam facilities.
Summary
The main goal of ASTRUm is to employ stored and cooled radioactive ions for forefront nuclear astrophysics research. Four key experiments are proposed to be conducted at GSI in Darmstadt, which holds the only facility to date capable of storing highly charged radionuclides in the required element and energy range. The proposed experiments can hardly be conducted by any other technique or method.
The weak decay matrix element for the transition between the 2.3 keV state in 205Pb and the ground state of 205Tl will be measured via the bound state beta decay measurement of fully ionized 205Tl81+. This will provide the required data to determine the solar pp-neutrino flux integrated over the last 5 million years and will allow us to unveil the astrophysical conditions prior to the formation of the solar system.
The measurements of the alpha-decay width of the 4.033 MeV excited state in 19Ne will allow us to constrain the conditions for the ignition of the rp-process in X-ray bursters.
ASTRUm will open a new field by enabling for the first time measurements of proton- and alpha-capture reaction cross-sections on radioactive nuclei of interest for the p-process of nucleosynthesis.
Last but not least, broad band mass and half-life measurements in a ring is the only technique to precisely determine these key nuclear properties for nuclei with half-lives as short as a millisecond and production rates of below one ion per day.
To accomplish these measurements with highest efficiency, sensitivity and precision, improved detector systems will be developed within ASTRUm. Possible applications of these systems go beyond ASTRUm objectives and will be used in particular in accelerator physics.
The instrumentation and experience gained within ASTRUm will be indispensable for planning the future, next generation storage ring projects, which are launched or proposed at several radioactive ion beam facilities.
Max ERC Funding
1 874 750 €
Duration
Start date: 2016-04-01, End date: 2021-09-30
Project acronym BactInd
Project Bacterial cooperation at the individual cell level
Researcher (PI) Rolf Kuemmerli
Host Institution (HI) UNIVERSITAT ZURICH
Country Switzerland
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Summary
All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Max ERC Funding
1 994 981 €
Duration
Start date: 2016-09-01, End date: 2021-08-31