Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Country Czechia
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2022-05-31
Project acronym AcetyLys
Project Unravelling the role of lysine acetylation in the regulation of glycolysis in cancer cells through the development of synthetic biology-based tools
Researcher (PI) Eyal Arbely
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Country Israel
Call Details Starting Grant (StG), LS9, ERC-2015-STG
Summary Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Summary
Synthetic biology is an emerging discipline that offers powerful tools to control and manipulate fundamental processes in living matter. We propose to develop and apply such tools to modify the genetic code of cultured mammalian cells and bacteria with the aim to study the role of lysine acetylation in the regulation of metabolism and in cancer development. Thousands of lysine acetylation sites were recently discovered on non-histone proteins, suggesting that acetylation is a widespread and evolutionarily conserved post translational modification, similar in scope to phosphorylation and ubiquitination. Specifically, it has been found that most of the enzymes of metabolic processes—including glycolysis—are acetylated, implying that acetylation is key regulator of cellular metabolism in general and in glycolysis in particular. The regulation of metabolic pathways is of particular importance to cancer research, as misregulation of metabolic pathways, especially upregulation of glycolysis, is common to most transformed cells and is now considered a new hallmark of cancer. These data raise an immediate question: what is the role of acetylation in the regulation of glycolysis and in the metabolic reprogramming of cancer cells? While current methods rely on mutational analyses, we will genetically encode the incorporation of acetylated lysine and directly measure the functional role of each acetylation site in cancerous and non-cancerous cell lines. Using this methodology, we will study the structural and functional implications of all the acetylation sites in glycolytic enzymes. We will also decipher the mechanism by which acetylation is regulated by deacetylases and answer a long standing question – how 18 deacetylases recognise their substrates among thousands of acetylated proteins? The developed methodologies can be applied to a wide range of protein families known to be acetylated, thereby making this study relevant to diverse research fields.
Max ERC Funding
1 499 375 €
Duration
Start date: 2016-07-01, End date: 2022-06-30
Project acronym ACO
Project The Proceedings of the Ecumenical Councils from Oral Utterance to Manuscript Edition as Evidence for Late Antique Persuasion and Self-Representation Techniques
Researcher (PI) Peter Alfred Riedlberger
Host Institution (HI) OTTO-FRIEDRICH-UNIVERSITAET BAMBERG
Country Germany
Call Details Starting Grant (StG), SH5, ERC-2015-STG
Summary The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Summary
The Acts of the Ecumenical Councils of Late Antiquity include (purportedly) verbatim minutes of the proceedings, a formal framework and copies of relevant documents which were either (allegedly) read out during the proceedings or which were later attached to the Acts proper. Despite this unusual wealth of documentary evidence, the daunting nature of the Acts demanding multidisciplinary competency, their complex structure with a matryoshka-like nesting of proceedings from different dates, and the stereotype that their contents bear only on Christological niceties have deterred generations of historians from studying them. Only in recent years have their fortunes begun to improve, but this recent research has not always been based on sound principles: the recorded proceedings of the sessions are still often accepted as verbatim minutes. Yet even a superficial reading quickly reveals widespread editorial interference. We must accept that in many cases the Acts will teach us less about the actual debates than about the editors who shaped their presentation. This does not depreciate the Acts’ evidence: on the contrary, they are first-rate material for the rhetoric of persuasion and self-representation. It is possible, in fact, to take the investigation to a deeper level and examine in what manner the oral proceedings were put into writing: several passages in the Acts comment upon the process of note-taking and the work of the shorthand writers. Thus, the main objective of the proposed research project could be described as an attempt to trace the destinies of the Acts’ texts, from the oral utterance to the manuscript texts we have today. This will include the fullest study on ancient transcript techniques to date; a structural analysis of the Acts’ texts with the aim of highlighting edited passages; and a careful comparison of the various editions of the Acts, which survive in Greek, Latin, Syriac and Coptic, in order to detect traces of editorial interference.
Max ERC Funding
1 497 250 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ACoolTouch
Project Neural mechanisms of multisensory perceptual binding
Researcher (PI) James Francis Alexander Poulet
Host Institution (HI) MAX DELBRUECK CENTRUM FUER MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT (MDC)
Country Germany
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Summary
Sensory perception involves the discrimination and binding of multiple modalities of sensory input. This is especially evident in the somatosensory system where different modalities of sensory input, including thermal and mechanosensory, are combined to generate a unified percept. The neural mechanisms of multisensory binding are unknown, in part because sensory perception is typically studied within a single modality in a single brain region. I propose a multi-level approach to investigate thermo-tactile processing in the mouse forepaw system from the primary sensory afferent neurons to thalamo-cortical circuits and behaviour.
The mouse forepaw system is the ideal system to investigate multisensory binding as the sensory afferent neurons are well investigated, cell type-specific lines are available, in vivo optogenetic manipulation is possible both in sensory afferent neurons and central circuits and we have developed high-resolution somatosensory perception behaviours. We have previously shown that mouse primary somatosensory forepaw cortical neurons respond to both tactile and thermal stimuli and are required for non-noxious cooling perception. With multimodal neurons how, then, is it possible to both discriminate and bind thermal and tactile stimuli?
I propose 3 objectives to address this question. We will first, perform functional mapping of the thermal and tactile pathways to cortex; second, investigate the neural mechanisms of thermo-tactile discrimination in behaving mice; and third, compare neural processing during two thermo-tactile binding tasks, the first using passively applied stimuli, and the second, active manipulation of thermal objects.
At each stage we will perform cell type-specific neural recordings and causal optogenetic manipulations in awake and behaving mice. Our multi-level approach will provide a comprehensive investigation into how the brain performs multisensory perceptual binding: a fundamental yet unsolved problem in neuroscience.
Max ERC Funding
1 999 877 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym AEDNA
Project Amorphous and Evolutionary DNA Nanotechnology
Researcher (PI) Friedrich SIMMEL
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), PE5, ERC-2015-AdG
Summary Amorphous and evolutionary DNA nanotechnology (AEDNA) explores novel conceptual directions and applications for DNA nanotechnology, which are based on intelligent, DNA-programmed soft hybrid materials, and the utilization of evolutionary principles for the optimization of nucleic acid nanocomponents.
Amorphous DNA nanotechnology first aims at the creation of cell-sized, DNA-programmed microgels – DNA cells – with sensor, computation, communication, and actuator functions. Interacting DNA cells will be arranged into chemical cell consortia and artificial tissues using microfluidics, micromanipulation and 3D bioprinting techniques. Spatially distributed chemical circuits will then be utilized to establish collective behaviors such as quorum sensing, pattern formation, and self-differentiation within these consortia and tissues. The approach will be further scaled up to produce multicomponent DNA gel compositions that become active and differentiate upon mixing.
In evolutionary nanotechnology, techniques derived from directed molecular evolution experiments will be applied to optimize the arrangement of functional nucleic acids on DNA and RNA nanoscaffolds. Compartmentalization and microfluidics will be utilized to screen for nucleic acid nanostructures capable of superstructure formation, and also for the development of ligand-sensitive components for molecular programming. An evolutionary approach will then be applied to amorphous DNA cells, resulting in DNA cell populations which contain individuals with different molecular identities.
The proposal will pave the way for the creation of macroscopic materials with DNA-programmed intelligence, resulting in novel applications for DNA nanotechnology and molecular programming in diverse fields such as environmental and biological sensing, biocatalysis, smart adaptive materials, and soft robotics.
Summary
Amorphous and evolutionary DNA nanotechnology (AEDNA) explores novel conceptual directions and applications for DNA nanotechnology, which are based on intelligent, DNA-programmed soft hybrid materials, and the utilization of evolutionary principles for the optimization of nucleic acid nanocomponents.
Amorphous DNA nanotechnology first aims at the creation of cell-sized, DNA-programmed microgels – DNA cells – with sensor, computation, communication, and actuator functions. Interacting DNA cells will be arranged into chemical cell consortia and artificial tissues using microfluidics, micromanipulation and 3D bioprinting techniques. Spatially distributed chemical circuits will then be utilized to establish collective behaviors such as quorum sensing, pattern formation, and self-differentiation within these consortia and tissues. The approach will be further scaled up to produce multicomponent DNA gel compositions that become active and differentiate upon mixing.
In evolutionary nanotechnology, techniques derived from directed molecular evolution experiments will be applied to optimize the arrangement of functional nucleic acids on DNA and RNA nanoscaffolds. Compartmentalization and microfluidics will be utilized to screen for nucleic acid nanostructures capable of superstructure formation, and also for the development of ligand-sensitive components for molecular programming. An evolutionary approach will then be applied to amorphous DNA cells, resulting in DNA cell populations which contain individuals with different molecular identities.
The proposal will pave the way for the creation of macroscopic materials with DNA-programmed intelligence, resulting in novel applications for DNA nanotechnology and molecular programming in diverse fields such as environmental and biological sensing, biocatalysis, smart adaptive materials, and soft robotics.
Max ERC Funding
2 157 698 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AFFORDS-HIGHER
Project Skilled Intentionality for 'Higher' Embodied Cognition: Joining forces with a field of affordances in flux
Researcher (PI) Dirk Willem Rietveld
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Country Netherlands
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Summary
In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Max ERC Funding
1 499 850 €
Duration
Start date: 2016-05-01, End date: 2021-10-31
Project acronym AGATM
Project A Global Anthropology of Transforming Marriage
Researcher (PI) Janet CARSTEN
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Advanced Grant (AdG), SH5, ERC-2015-AdG
Summary This research will create a new theoretical vision of the importance of marriage as an agent of transformation in human sociality. Marriage globally is undergoing profound change, provoking intense debate and anxiety. These concerns refract wider instabilities in political, economic, and familial institutions. They signal the critical role of marriage in bringing together - and separating - intimate, personal, and familial life with wider state institutions. But we have little up to date comparative research or general theory of how marriage changes or the long-term significance of such change. Paradoxically, social scientific and public discourse emphasise the conservative and normative aspects of marriage. This underlines the need for a new theoretical frame that takes account of cultural and historical specificity to grasp the importance of marriage as both vehicle of and engine for transformation. AGATM overturns conventional understandings by viewing marriage as inherently transformative, indeed at the heart of social and cultural change. The research will investigate current transformations of marriage in two distinct senses. First, it will undertake an ethnographic investigation of new forms of marriage in selected sites in Europe, N. America, Asia, and Africa. Second, it will subject ‘marriage’ to a rigorous theoretical critique that will denaturalise marriage and reintegrate it into the new anthropology of kinship. Research on five complementary and contrastive sub-projects examining emerging forms of marriage in different locations will be structured through the themes of care, property, and ritual forms. The overarching analytic of temporality will frame the theoretical vision of the research and connect the themes. The resulting six monographs, journal articles, and exhibition will together revitalise the study of kinship by placing the moral, practical, political, and imaginative significance of marriage over time at its centre.
Summary
This research will create a new theoretical vision of the importance of marriage as an agent of transformation in human sociality. Marriage globally is undergoing profound change, provoking intense debate and anxiety. These concerns refract wider instabilities in political, economic, and familial institutions. They signal the critical role of marriage in bringing together - and separating - intimate, personal, and familial life with wider state institutions. But we have little up to date comparative research or general theory of how marriage changes or the long-term significance of such change. Paradoxically, social scientific and public discourse emphasise the conservative and normative aspects of marriage. This underlines the need for a new theoretical frame that takes account of cultural and historical specificity to grasp the importance of marriage as both vehicle of and engine for transformation. AGATM overturns conventional understandings by viewing marriage as inherently transformative, indeed at the heart of social and cultural change. The research will investigate current transformations of marriage in two distinct senses. First, it will undertake an ethnographic investigation of new forms of marriage in selected sites in Europe, N. America, Asia, and Africa. Second, it will subject ‘marriage’ to a rigorous theoretical critique that will denaturalise marriage and reintegrate it into the new anthropology of kinship. Research on five complementary and contrastive sub-projects examining emerging forms of marriage in different locations will be structured through the themes of care, property, and ritual forms. The overarching analytic of temporality will frame the theoretical vision of the research and connect the themes. The resulting six monographs, journal articles, and exhibition will together revitalise the study of kinship by placing the moral, practical, political, and imaginative significance of marriage over time at its centre.
Max ERC Funding
2 297 584 €
Duration
Start date: 2017-01-01, End date: 2022-06-30
Project acronym Age Asymmetry
Project Age-Selective Segregation of Organelles
Researcher (PI) Pekka Aleksi Katajisto
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Summary
Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym ALS-Networks
Project Defining functional networks of genetic causes for ALS and related neurodegenerative disorders
Researcher (PI) Edor Kabashi
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Summary
Brain and spinal cord diseases affect 38% of the European population and cost over 800 billion € annually; representing by far the largest health challenge. ALS is a prevalent neurological disease caused by motor neuron death with an invariably fatal outcome. I contributed to ALS research with the groundbreaking discovery of TDP-43 mutations, functionally characterized these mutations in the first vertebrate model and demonstrated a genetic interaction with another major ALS gene FUS. Emerging evidence indicates that four major causative factors in ALS, C9orf72, TDP-43, FUS & SQSTM1, genetically interact and could function in common cellular mechanisms. Here, I will develop zebrafish transgenic lines for all four genes, using state of the art genomic editing tools to combine simultaneous gene knockout and expression of the mutant alleles. Using these innovative disease models I will study the functional interactions amongst these four genes and their converging effect on key ALS pathogenic mechanisms: autophagy degradation, stress granule formation and RNA regulation. These studies will permit to pinpoint the molecular cascades that underlie ALS-related neurodegeneration. We will further expand the current ALS network by proposing and validating novel genetic interactors, which will be further screened for disease-causing variants and as pathological markers in patient samples. The power of zebrafish as a vertebrate model amenable to high-content phenotype-based screens will enable discovery of bioactive compounds that are neuroprotective in multiple animal models of disease. This project will increase the fundamental understanding of the relevance of C9orf72, TDP-43, FUS and SQSTM1 by developing animal models to characterize common pathophysiological mechanisms. Furthermore, I will uncover novel genetic, disease-related and pharmacological modifiers to extend the ALS network that will facilitate development of therapeutic strategies for neurodegenerative disorders
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ALZSYN
Project Imaging synaptic contributors to dementia
Researcher (PI) Tara Spires-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Consolidator Grant (CoG), LS5, ERC-2015-CoG
Summary Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Summary
Alzheimer's disease, the most common cause of dementia in older people, is a devastating condition that is becoming a public health crisis as our population ages. Despite great progress recently in Alzheimer’s disease research, we have no disease modifying drugs and a decade with a 99.6% failure rate of clinical trials attempting to treat the disease. This project aims to develop relevant therapeutic targets to restore brain function in Alzheimer’s disease by integrating human and model studies of synapses. It is widely accepted in the field that alterations in amyloid beta initiate the disease process. However the cascade leading from changes in amyloid to widespread tau pathology and neurodegeneration remain unclear. Synapse loss is the strongest pathological correlate of dementia in Alzheimer’s, and mounting evidence suggests that synapse degeneration plays a key role in causing cognitive decline. Here I propose to test the hypothesis that the amyloid cascade begins at the synapse leading to tau pathology, synapse dysfunction and loss, and ultimately neural circuit collapse causing cognitive impairment. The team will use cutting-edge multiphoton and array tomography imaging techniques to test mechanisms downstream of amyloid beta at synapses, and determine whether intervening in the cascade allows recovery of synapse structure and function. Importantly, I will combine studies in robust models of familial Alzheimer’s disease with studies in postmortem human brain to confirm relevance of our mechanistic studies to human disease. Finally, human stem cell derived neurons will be used to test mechanisms and potential therapeutics in neurons expressing the human proteome. Together, these experiments are ground-breaking since they have the potential to further our understanding of how synapses are lost in Alzheimer’s disease and to identify targets for effective therapeutic intervention, which is a critical unmet need in today’s health care system.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31