Project acronym 3D-OA-HISTO
Project Development of 3D Histopathological Grading of Osteoarthritis
Researcher (PI) Simo Jaakko Saarakkala
Host Institution (HI) OULUN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary "Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Summary
"Background: Osteoarthritis (OA) is a common musculoskeletal disease occurring worldwide. Despite extensive research, etiology of OA is still poorly understood. Histopathological grading (HPG) of 2D tissue sections is the gold standard reference method for determination of OA stage. However, traditional 2D-HPG is destructive and based only on subjective visual evaluation. These limitations induce bias to clinical in vitro OA diagnostics and basic research that both rely strongly on HPG.
Objectives: 1) To establish and validate the very first 3D-HPG of OA based on cutting-edge nano/micro-CT (Computed Tomography) technologies in vitro; 2) To use the established method to clarify the beginning phases of OA; and 3) To validate 3D-HPG of OA for in vivo use.
Methods: Several hundreds of human osteochondral samples from patients undergoing total knee arthroplasty will be collected. The samples will be imaged in vitro with nano/micro-CT and clinical high-end extremity CT devices using specific contrast-agents to quantify tissue constituents and structure in 3D in large volume. From this information, a novel 3D-HPG is developed with statistical classification algorithms. Finally, the developed novel 3D-HPG of OA will be applied clinically in vivo.
Significance: This is the very first study to establish 3D-HPG of OA pathology in vitro and in vivo. Furthermore, the developed technique hugely improves the understanding of the beginning phases of OA. Ultimately, the study will contribute for improving OA patients’ quality of life by slowing the disease progression, and for providing powerful tools to develop new OA therapies."
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym Age Asymmetry
Project Age-Selective Segregation of Organelles
Researcher (PI) Pekka Aleksi Katajisto
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Summary
Our tissues are constantly renewed by stem cells. Over time, stem cells accumulate cellular damage that will compromise renewal and results in aging. As stem cells can divide asymmetrically, segregation of harmful factors to the differentiating daughter cell could be one possible mechanism for slowing damage accumulation in the stem cell. However, current evidence for such mechanisms comes mainly from analogous findings in yeast, and studies have concentrated only on few types of cellular damage.
I hypothesize that the chronological age of a subcellular component is a proxy for all the damage it has sustained. In order to secure regeneration, mammalian stem cells may therefore specifically sort old cellular material asymmetrically. To study this, I have developed a novel strategy and tools to address the age-selective segregation of any protein in stem cell division. Using this approach, I have already discovered that stem-like cells of the human mammary epithelium indeed apportion chronologically old mitochondria asymmetrically in cell division, and enrich old mitochondria to the differentiating daughter cell. We will investigate the mechanisms underlying this novel phenomenon, and its relevance for mammalian aging.
We will first identify how old and young mitochondria differ, and how stem cells recognize them to facilitate the asymmetric segregation. Next, we will analyze the extent of asymmetric age-selective segregation by targeting several other subcellular compartments in a stem cell division. Finally, we will determine whether the discovered age-selective segregation is a general property of stem cell in vivo, and it's functional relevance for maintenance of stem cells and tissue regeneration. Our discoveries may open new possibilities to target aging associated functional decline by induction of asymmetric age-selective organelle segregation.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AI-PREVENT
Project A nationwide artificial intelligence risk assessment for primary prevention of cardiometabolic diseases
Researcher (PI) Andrea Ganna
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), LS7, ERC-2020-STG
Summary Diabetes, stroke and coronary artery disease (cardiometabolic diseases) are the leading cause of death in Europe. Given that effective pharmacological and lifestyle interventions are available, it is important to identify high risk individuals at an early stage. Traditionally, this is done using clinical prediction models. However, the established models have substantial limitations: they are often used by doctors only when an underlying disease is already suspected, they are not developed on updated nationally-representative data and they require time-consuming clinical measurements. Thus, a substantial part of the population is not provided with risk assessment. I propose to revolutionize the existing approaches to primary prevention by providing risk assessment of cardiometabolic diseases before an individual even steps into the doctor’s office for a visit. To this end my project has three main objectives:
1) Development of artificial intelligence (AI) approaches to model health trajectories based on nationwide registry data on medications, diagnoses, familial risk and socio-demographic information to obtain accurate risk estimates for cardiometabolic disease. I will integrate high quality data from selected countries that have long traditions of registry data (Finland and Sweden, over 7.5 million individuals).
2) To identify health trajectories that maximize the clinical utility of genetic scores by integrating genetic and registry-based data on > 1 million people to identify subgroups of individuals for whom genetic information might improve risk prediction.
3) Validation of AI and genetic-based risk assessment as first-stage screening via a clinical study in 2800 individuals.
My project leverages the latest developments in AI and high-quality data of unprecedented scale to deliver a paradigm shift with important public health consequences by potentially changing the way cardiometabolic disease risk is assessed.
Summary
Diabetes, stroke and coronary artery disease (cardiometabolic diseases) are the leading cause of death in Europe. Given that effective pharmacological and lifestyle interventions are available, it is important to identify high risk individuals at an early stage. Traditionally, this is done using clinical prediction models. However, the established models have substantial limitations: they are often used by doctors only when an underlying disease is already suspected, they are not developed on updated nationally-representative data and they require time-consuming clinical measurements. Thus, a substantial part of the population is not provided with risk assessment. I propose to revolutionize the existing approaches to primary prevention by providing risk assessment of cardiometabolic diseases before an individual even steps into the doctor’s office for a visit. To this end my project has three main objectives:
1) Development of artificial intelligence (AI) approaches to model health trajectories based on nationwide registry data on medications, diagnoses, familial risk and socio-demographic information to obtain accurate risk estimates for cardiometabolic disease. I will integrate high quality data from selected countries that have long traditions of registry data (Finland and Sweden, over 7.5 million individuals).
2) To identify health trajectories that maximize the clinical utility of genetic scores by integrating genetic and registry-based data on > 1 million people to identify subgroups of individuals for whom genetic information might improve risk prediction.
3) Validation of AI and genetic-based risk assessment as first-stage screening via a clinical study in 2800 individuals.
My project leverages the latest developments in AI and high-quality data of unprecedented scale to deliver a paradigm shift with important public health consequences by potentially changing the way cardiometabolic disease risk is assessed.
Max ERC Funding
1 550 057 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym ALEM
Project ADDITIONAL LOSSES IN ELECTRICAL MACHINES
Researcher (PI) Matti Antero Arkkio
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary "Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Summary
"Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Max ERC Funding
2 489 949 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AMETIST
Project Advanced III-V Materials and Processes Enabling Ultrahigh-efficiency ( 50%) Photovoltaics
Researcher (PI) Mircea Dorel GUINA
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Summary
Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Max ERC Funding
2 492 719 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ATOP
Project Atomically-engineered nonlinear photonics with two-dimensional layered material superlattices
Researcher (PI) zhipei SUN
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Summary
The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Max ERC Funding
2 442 448 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym Bi3BoostFlowBat
Project Bioinspired, biphasic and bipolar flow batteries with boosters for sustainable large-scale energy storage
Researcher (PI) Pekka PELJO
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Starting Grant (StG), PE8, ERC-2020-STG
Summary To satisfy our growing energy demand while reducing reliance on fossil fuels, a switch to renewable energy sources is vital. The intermittent nature of the latter means innovations in energy storage technology is a key grand challenge. Cost and sustainability issues currently limit the widespread use of electrochemical energy storage technologies, such as lithium ion and redox flow batteries. As the scale for energy storage is simply enormous, the only option is to look for abundant materials. However, compounds that fulfil the extensive requirements entailed at low cost has yet to be reported. While it is possible that the holy grail of energy storage will be found, for example by advanced computational tools and machine learning to design “perfect” abundant molecules, a more flexible, innovative solution to sustainable and cost-effective large-scale energy storage is required. Bi3BoostFlowBat will develop game changing strategies to widen the choice of compounds utilizable for batteries to simultaneously satisfy the requirements for low cost, optimal redox potentials, high solubility and stability in all conditions. The aim of this project is to develop cost-efficient batteries by using solid boosters and by eliminating cross over. Two approaches will be pursued for cross-over elimination 1) bio-inspired polymer batteries, where cross-over of solubilized polymers is prevented by size-exclusion membranes and 2) biphasic emulsion flow batteries, where redox species are transferred to oil phase droplets upon charge. Third research direction focuses on systems to maintain a pH gradient, to allow operation of differential pH systems to improve the cell voltages. Limits of different approaches will be explored by taking an electrochemical engineering approach to model the performance of different systems and by validating the models experimentally. This work will chart the route towards the future third generation battery technologies for the large-scale energy storage.
Summary
To satisfy our growing energy demand while reducing reliance on fossil fuels, a switch to renewable energy sources is vital. The intermittent nature of the latter means innovations in energy storage technology is a key grand challenge. Cost and sustainability issues currently limit the widespread use of electrochemical energy storage technologies, such as lithium ion and redox flow batteries. As the scale for energy storage is simply enormous, the only option is to look for abundant materials. However, compounds that fulfil the extensive requirements entailed at low cost has yet to be reported. While it is possible that the holy grail of energy storage will be found, for example by advanced computational tools and machine learning to design “perfect” abundant molecules, a more flexible, innovative solution to sustainable and cost-effective large-scale energy storage is required. Bi3BoostFlowBat will develop game changing strategies to widen the choice of compounds utilizable for batteries to simultaneously satisfy the requirements for low cost, optimal redox potentials, high solubility and stability in all conditions. The aim of this project is to develop cost-efficient batteries by using solid boosters and by eliminating cross over. Two approaches will be pursued for cross-over elimination 1) bio-inspired polymer batteries, where cross-over of solubilized polymers is prevented by size-exclusion membranes and 2) biphasic emulsion flow batteries, where redox species are transferred to oil phase droplets upon charge. Third research direction focuses on systems to maintain a pH gradient, to allow operation of differential pH systems to improve the cell voltages. Limits of different approaches will be explored by taking an electrochemical engineering approach to model the performance of different systems and by validating the models experimentally. This work will chart the route towards the future third generation battery technologies for the large-scale energy storage.
Max ERC Funding
1 499 880 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym BioELCell
Project Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Researcher (PI) Orlando Rojas Gaona
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Summary
BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Max ERC Funding
2 486 182 €
Duration
Start date: 2018-08-01, End date: 2023-07-31