Project acronym CARDYADS
Project Controlling Cardiomyocyte Dyadic Structure
Researcher (PI) William Edward Louch
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Contraction and relaxation of cardiac myocytes, and thus the whole heart, are critically dependent on dyads. These functional junctions between t-tubules, which are invaginations of the surface membrane, and the sarcoplasmic reticulum allow efficient control of calcium release into the cytosol, and also its removal. Dyads are formed gradually during development and break down during disease. However, the precise nature of dyadic structure is unclear, even in healthy adult cardiac myocytes, as are the triggers and consequences of altering dyadic integrity. In this proposal, my group will investigate the precise 3-dimensional arrangement of dyads and their proteins during development, adulthood, and heart failure by employing CLEM imaging (PALM and EM tomography). This will be accomplished by developing transgenic mice with fluorescent labels on four dyadic proteins (L-type calcium channel, ryanodine receptor, sodium-calcium exchanger, SERCA), and by imaging tissue from explanted normal and failing human hearts. The signals responsible for controlling dyadic formation, maintenance, and disruption will be determined by performing high-throughput sequencing to identify novel genes involved with these processes in several established model systems. Particular focus will be given to investigating left ventricular wall stress and stretch-dependent gene regulation as controllers of dyadic integrity. Candidate genes will be manipulated in cell models and transgenic animals to promote dyadic formation and maintenance, and reverse dyadic disruption in heart failure. The consequences of dyadic structure for function will be tested experimentally and with mathematical modeling to examine effects on cardiac myocyte calcium homeostasis and whole-heart function. The results of this project are anticipated to yield unprecedented insight into dyadic structure, regulation, and function, and to identify novel therapeutic targets for heart disease patients.
Summary
Contraction and relaxation of cardiac myocytes, and thus the whole heart, are critically dependent on dyads. These functional junctions between t-tubules, which are invaginations of the surface membrane, and the sarcoplasmic reticulum allow efficient control of calcium release into the cytosol, and also its removal. Dyads are formed gradually during development and break down during disease. However, the precise nature of dyadic structure is unclear, even in healthy adult cardiac myocytes, as are the triggers and consequences of altering dyadic integrity. In this proposal, my group will investigate the precise 3-dimensional arrangement of dyads and their proteins during development, adulthood, and heart failure by employing CLEM imaging (PALM and EM tomography). This will be accomplished by developing transgenic mice with fluorescent labels on four dyadic proteins (L-type calcium channel, ryanodine receptor, sodium-calcium exchanger, SERCA), and by imaging tissue from explanted normal and failing human hearts. The signals responsible for controlling dyadic formation, maintenance, and disruption will be determined by performing high-throughput sequencing to identify novel genes involved with these processes in several established model systems. Particular focus will be given to investigating left ventricular wall stress and stretch-dependent gene regulation as controllers of dyadic integrity. Candidate genes will be manipulated in cell models and transgenic animals to promote dyadic formation and maintenance, and reverse dyadic disruption in heart failure. The consequences of dyadic structure for function will be tested experimentally and with mathematical modeling to examine effects on cardiac myocyte calcium homeostasis and whole-heart function. The results of this project are anticipated to yield unprecedented insight into dyadic structure, regulation, and function, and to identify novel therapeutic targets for heart disease patients.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym CAtMolChip
Project Cold Atmospheric Molecules on a Chip
Researcher (PI) Stephen Dermot Hogan
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Highly excited electronic states of small atmospheric molecules play an important, but as yet little explored, role in the reactivity, and in the evolution of plasmas, including the Aurora Borealis, in the upper atmosphere of the Earth. Processes involving these highly excited states are very challenging to investigate theoretically because of the high density of states close to the ionization limits where they lie. Therefore, experimental input is essential for the identification of the reaction and decay mechanisms, and the quantum states of importance in future studies. However, experimental techniques that can be exploited to provide this input have only become available very recently. These techniques permit gas-phase molecular samples in these highly excited states to be confined in traps for sufficient lengths of time (e.g. 1 ms – 10 ms) for detailed studies to be performed in a controlled laboratory environment. They include resonance-enhanced and non-resonance-enhanced multiphoton excitation of long-lived high angular momentum Rydberg states of small molecules, and chip-based devices for efficiently decelerating, transporting and trapping these samples.
With the support of this Consolidator Grant a new experimental research program will be developed in the Department of Physics and Astronomy at University College London involving laboratory based studies of (1) inelastic scattering processes, and (2) the decay mechanisms of gas-phase atmospheric molecules, including N2, O2 and NO, and their constituent atoms, in high Rydberg states. The planned experiments will be directed toward understanding the effects of static and time-dependent electric and magnetic fields, and blackbody radiation fields on slow dissociation processes that occur in highly excited states of N2, O2 and NO, investigations of collisional energy transfer processes, and studies of the role that these excited electronic states play in the evolution and reactivity of atmospheric plasmas incl
Summary
Highly excited electronic states of small atmospheric molecules play an important, but as yet little explored, role in the reactivity, and in the evolution of plasmas, including the Aurora Borealis, in the upper atmosphere of the Earth. Processes involving these highly excited states are very challenging to investigate theoretically because of the high density of states close to the ionization limits where they lie. Therefore, experimental input is essential for the identification of the reaction and decay mechanisms, and the quantum states of importance in future studies. However, experimental techniques that can be exploited to provide this input have only become available very recently. These techniques permit gas-phase molecular samples in these highly excited states to be confined in traps for sufficient lengths of time (e.g. 1 ms – 10 ms) for detailed studies to be performed in a controlled laboratory environment. They include resonance-enhanced and non-resonance-enhanced multiphoton excitation of long-lived high angular momentum Rydberg states of small molecules, and chip-based devices for efficiently decelerating, transporting and trapping these samples.
With the support of this Consolidator Grant a new experimental research program will be developed in the Department of Physics and Astronomy at University College London involving laboratory based studies of (1) inelastic scattering processes, and (2) the decay mechanisms of gas-phase atmospheric molecules, including N2, O2 and NO, and their constituent atoms, in high Rydberg states. The planned experiments will be directed toward understanding the effects of static and time-dependent electric and magnetic fields, and blackbody radiation fields on slow dissociation processes that occur in highly excited states of N2, O2 and NO, investigations of collisional energy transfer processes, and studies of the role that these excited electronic states play in the evolution and reactivity of atmospheric plasmas incl
Max ERC Funding
1 985 553 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym CD40-INN
Project CD40 goes innate: defining and targeting CD40 signaling intermediates in the macrophage to treat atherosclerosis
Researcher (PI) Esther Lutgens Leiner
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Consolidator Grant (CoG), LS4, ERC-2015-CoG
Summary Atherosclerosis, the underlying cause of the majority of cardiovascular diseases (CVD), is a lipid driven, inflammatory disease of the large arteries. Despite a 25% relative risk reduction achieved by lipid-lowering treatment, the vast majority of atherosclerosis-induced CVD risk remains unaddressed. Therefore, characterizing mediators of the inflammatory aspect of atherosclerosis is a widely recognized scientific goal with great therapeutic implications.
Co-stimulatory molecules are key players in modulating immune interactions. My laboratory has defined the co-stimulatory CD40-CD40L dyad as a major driver of atherosclerosis. Inhibition of CD40, and of its interaction with the adaptor molecule TRAF6 by genetic deficiency, antibody treatment or (nanoparticle based) small molecule inhibitor (SMI) treatment, is one of the most powerful therapies to reduce atherosclerosis in a laboratory setting. Although CD40-CD40L interactions are associated with adaptive immunity, I recently identified the macrophage as a driver of CD40-induced inflammation in atherosclerosis. We will use state-of-the-art in vitro experiments, live cell-, super resolution imaging, proteomics approaches and mutant mouse models to unravel the role of macrophage CD40 in atherosclerosis. Moreover, using structure based virtual ligand screening, I will develop lead SMIs targeting macrophage CD40-signaling, which I will deliver using macrophage-targeting nanoparticles. My goal is to define the role of macrophage CD40 in inflammation and immunity and disentangle how its activation affects atherosclerosis. I will finally test the feasibility of targeting macrophage CD40-signaling as a treatment for CVD.
These studies will define the role of CD40-signaling in the innate immune system in health and (cardiovascular) disease. As components of macrophage CD40-signaling have the potential to be amenable to pharmacological manipulation, we will establish their feasibility as novel targets for (CVD) treatment.
Summary
Atherosclerosis, the underlying cause of the majority of cardiovascular diseases (CVD), is a lipid driven, inflammatory disease of the large arteries. Despite a 25% relative risk reduction achieved by lipid-lowering treatment, the vast majority of atherosclerosis-induced CVD risk remains unaddressed. Therefore, characterizing mediators of the inflammatory aspect of atherosclerosis is a widely recognized scientific goal with great therapeutic implications.
Co-stimulatory molecules are key players in modulating immune interactions. My laboratory has defined the co-stimulatory CD40-CD40L dyad as a major driver of atherosclerosis. Inhibition of CD40, and of its interaction with the adaptor molecule TRAF6 by genetic deficiency, antibody treatment or (nanoparticle based) small molecule inhibitor (SMI) treatment, is one of the most powerful therapies to reduce atherosclerosis in a laboratory setting. Although CD40-CD40L interactions are associated with adaptive immunity, I recently identified the macrophage as a driver of CD40-induced inflammation in atherosclerosis. We will use state-of-the-art in vitro experiments, live cell-, super resolution imaging, proteomics approaches and mutant mouse models to unravel the role of macrophage CD40 in atherosclerosis. Moreover, using structure based virtual ligand screening, I will develop lead SMIs targeting macrophage CD40-signaling, which I will deliver using macrophage-targeting nanoparticles. My goal is to define the role of macrophage CD40 in inflammation and immunity and disentangle how its activation affects atherosclerosis. I will finally test the feasibility of targeting macrophage CD40-signaling as a treatment for CVD.
These studies will define the role of CD40-signaling in the innate immune system in health and (cardiovascular) disease. As components of macrophage CD40-signaling have the potential to be amenable to pharmacological manipulation, we will establish their feasibility as novel targets for (CVD) treatment.
Max ERC Funding
1 999 420 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym CELL-in-CELL
Project Understanding host cellular systems that drive an endosymbiotic interaction
Researcher (PI) Thomas RICHARDS
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Consolidator Grant (CoG), LS8, ERC-2018-COG
Summary Endosymbiosis is a key phenomenon that has played a critical role in shaping biological diversity, driving gene transfer and generating cellular complexity. During the process of endosymbiosis, one cell is integrated within another to become a critical component of the recipient, changing its characteristics and allowing it to chart a distinct evolutionary trajectory. Endosymbiosis was fundamentally important to the origin and evolution of eukaryotic cellular complexity, because an endosymbiotic event roots the diversification of all known eukaryotes and endosymbiosis has continually driven the diversification of huge sections of the eukaryotic tree of life. Little is known about how nascent endosymbioses are established or how they go on to form novel cellular compartments known as endosymbiotic organelles. Paramecium bursaria is a single celled protist that harbours multiple green algae within to form a phototrophic endosymbiosis. This relationship is nascent as the partners can be separated, grown separately, and the endosymbiosis reinitiated. This project will identify, for the first time, the gene functions that enable one cell to incubate another within to form a stable endosymbiotic interaction. To identify and explore which host genes control endosymbiosis in P. bursaria we have developed RNAi silencing technology. In the proposed project we will conduct genome sequencing, followed by a large-scale RNAi knockdown screening experiment, to identify host genes that when silenced perturb the endosymbiont population. Having identified candidate genes, we will investigate the localisation and function of the host encoded proteins. This project will significantly change our current understanding of the evolutionary phenomenon of endosymbiosis by identifying the cellular adaptations that drive these interactions, advancing our understanding of how these important moments in evolution occur and how core cellular systems can diversify in function.
Summary
Endosymbiosis is a key phenomenon that has played a critical role in shaping biological diversity, driving gene transfer and generating cellular complexity. During the process of endosymbiosis, one cell is integrated within another to become a critical component of the recipient, changing its characteristics and allowing it to chart a distinct evolutionary trajectory. Endosymbiosis was fundamentally important to the origin and evolution of eukaryotic cellular complexity, because an endosymbiotic event roots the diversification of all known eukaryotes and endosymbiosis has continually driven the diversification of huge sections of the eukaryotic tree of life. Little is known about how nascent endosymbioses are established or how they go on to form novel cellular compartments known as endosymbiotic organelles. Paramecium bursaria is a single celled protist that harbours multiple green algae within to form a phototrophic endosymbiosis. This relationship is nascent as the partners can be separated, grown separately, and the endosymbiosis reinitiated. This project will identify, for the first time, the gene functions that enable one cell to incubate another within to form a stable endosymbiotic interaction. To identify and explore which host genes control endosymbiosis in P. bursaria we have developed RNAi silencing technology. In the proposed project we will conduct genome sequencing, followed by a large-scale RNAi knockdown screening experiment, to identify host genes that when silenced perturb the endosymbiont population. Having identified candidate genes, we will investigate the localisation and function of the host encoded proteins. This project will significantly change our current understanding of the evolutionary phenomenon of endosymbiosis by identifying the cellular adaptations that drive these interactions, advancing our understanding of how these important moments in evolution occur and how core cellular systems can diversify in function.
Max ERC Funding
2 602 483 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym chemREPEAT
Project Structure and Dynamics of Low-Complexity Regions in Proteins: The Huntingtin Case
Researcher (PI) Pau Bernado Pereto
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Proteins hosting regions highly enriched in one or few amino acids, the so-called Low-Complexity Regions (LCR), are very common in eukaryotes and play crucial roles in biology. Homorepeats, a subfamily of LCR that present stretches of the same amino acid, perform very specialized functions facilitated by the localized enrichment of the same physicochemical property. In contrast, numerous severe pathologies have been associated to abnormally long repetitions. Despite the relevance of homorepeats, their high-resolution characterization by traditional structural biology techniques is hampered by the degeneracy of the amino acid environments and their intrinsic flexibility. In chemREPEAT, I will develop strategies to incorporate isotopically labelled and unnatural amino acids at specific positions within homorepeats that will overcome present limitations. These labelled positions will be unique probes to investigate for first time the structure and dynamics of homorepeats at atomic level using complementary biophysical techniques. Computational tools will be specifically developed to derive three-dimensional conformational ensembles of homorepeats by synergistically integrating experimental data.
chemREPEAT strategies will be developed on huntingtin (Htt), the prototype of repetitive protein. Htt hosts a glutamine tract that is linked with Huntington’s disease (HD), a deadly neuropathology appearing in individuals with more than 35 consecutive Glutamine residues that represent a pathological threshold. The application of the developed approaches to several Htt constructions with different number of Glutamines will reveal the structural bases of the pathological threshold in HD and the role played by the regions flanking the Glutamine tract.
The strategies designed in chemREPEAT will expand present frontiers of structural biology to unveil the structure/function relationships for LCRs. This capacity will pave the way for a rational intervention in associated diseases.
Summary
Proteins hosting regions highly enriched in one or few amino acids, the so-called Low-Complexity Regions (LCR), are very common in eukaryotes and play crucial roles in biology. Homorepeats, a subfamily of LCR that present stretches of the same amino acid, perform very specialized functions facilitated by the localized enrichment of the same physicochemical property. In contrast, numerous severe pathologies have been associated to abnormally long repetitions. Despite the relevance of homorepeats, their high-resolution characterization by traditional structural biology techniques is hampered by the degeneracy of the amino acid environments and their intrinsic flexibility. In chemREPEAT, I will develop strategies to incorporate isotopically labelled and unnatural amino acids at specific positions within homorepeats that will overcome present limitations. These labelled positions will be unique probes to investigate for first time the structure and dynamics of homorepeats at atomic level using complementary biophysical techniques. Computational tools will be specifically developed to derive three-dimensional conformational ensembles of homorepeats by synergistically integrating experimental data.
chemREPEAT strategies will be developed on huntingtin (Htt), the prototype of repetitive protein. Htt hosts a glutamine tract that is linked with Huntington’s disease (HD), a deadly neuropathology appearing in individuals with more than 35 consecutive Glutamine residues that represent a pathological threshold. The application of the developed approaches to several Htt constructions with different number of Glutamines will reveal the structural bases of the pathological threshold in HD and the role played by the regions flanking the Glutamine tract.
The strategies designed in chemREPEAT will expand present frontiers of structural biology to unveil the structure/function relationships for LCRs. This capacity will pave the way for a rational intervention in associated diseases.
Max ERC Funding
1 999 844 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CholangioConcept
Project Functional in vivo analysis of cholangiocarcinoma development, progression and metastasis.
Researcher (PI) Lars Zender
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genetic heterogeneity and complexity are hallmarks of metastatic solid tumors and therapy resistance inevitably develops upon treatment with cytotoxic drugs or molecular targeted therapies. Cholangiocarcinoma (CCC, or bile duct cancer) represents the second most frequent primary liver tumor and has emerged as a health problem with sharply increasing incidence rates, in particular of intrahepatic CCC (ICC). The reason for increased CCC incidence remains unclear, but influences of western lifestyle and a resulting altered hepatic metabolism have been discussed. Surgical resection represents the only curative option for the treatment of CCC, however, many tumors are irresectable at the time of diagnosis. CCC represents a highly aggressive and metastatic tumor type and currently no effective systemic therapy regimen exists. The overall molecular mechanisms driving CCC formation and progression remain poorly characterized and it thus becomes clear that a detailed molecular characterization of cholangiocarcinogenesis and the identification of robust therapeutic targets for CCC treatment are urgently needed. Taking advantage of our strong expertises in chimaeric (mosaic) liver cancer mouse models and stable in vivo shRNA technology, we here propose a comprehensive and innovative approach to i) dissect molecular mechanisms of cholangiocarcinogenesis, with a particular emphasis on Kras driven ICC development from adult hepatocytes and oncogenomic profiling of ICC metastasis, ii) to employ direct in vivo shRNA screening to functionally identify new therapeutic targets for CCC treatment and iii) to characterize the role of the gut microbiome for CCC progression and metastasis. We envision this ERC-funded project will yield important new insights into the molecular mechanisms of CCC development, progression and metastasis. As our work comprises direct and functional strategies to identify new vulnerabilities in CCC, the obtained data harbor a very high translational potential.
Summary
Genetic heterogeneity and complexity are hallmarks of metastatic solid tumors and therapy resistance inevitably develops upon treatment with cytotoxic drugs or molecular targeted therapies. Cholangiocarcinoma (CCC, or bile duct cancer) represents the second most frequent primary liver tumor and has emerged as a health problem with sharply increasing incidence rates, in particular of intrahepatic CCC (ICC). The reason for increased CCC incidence remains unclear, but influences of western lifestyle and a resulting altered hepatic metabolism have been discussed. Surgical resection represents the only curative option for the treatment of CCC, however, many tumors are irresectable at the time of diagnosis. CCC represents a highly aggressive and metastatic tumor type and currently no effective systemic therapy regimen exists. The overall molecular mechanisms driving CCC formation and progression remain poorly characterized and it thus becomes clear that a detailed molecular characterization of cholangiocarcinogenesis and the identification of robust therapeutic targets for CCC treatment are urgently needed. Taking advantage of our strong expertises in chimaeric (mosaic) liver cancer mouse models and stable in vivo shRNA technology, we here propose a comprehensive and innovative approach to i) dissect molecular mechanisms of cholangiocarcinogenesis, with a particular emphasis on Kras driven ICC development from adult hepatocytes and oncogenomic profiling of ICC metastasis, ii) to employ direct in vivo shRNA screening to functionally identify new therapeutic targets for CCC treatment and iii) to characterize the role of the gut microbiome for CCC progression and metastasis. We envision this ERC-funded project will yield important new insights into the molecular mechanisms of CCC development, progression and metastasis. As our work comprises direct and functional strategies to identify new vulnerabilities in CCC, the obtained data harbor a very high translational potential.
Max ERC Funding
1 998 898 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym chromo-SUMMIT
Project Decoding dynamic chromatin signaling by single-molecule multiplex detection
Researcher (PI) Beat FIERZ
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Consolidator Grant (CoG), PE4, ERC-2016-COG
Summary Transient multivalent interactions are critical for biological processes such as signaling pathways controlling chromatin function. Chromatin, the nucleoprotein complex organizing the genome, is dynamically regulated by post-translational modifications (PTMs) of the chromatin fiber. Protein effectors interact with combinations of these PTMs through multivalent interactions, deposit novel PTMs, thereby propagate signaling cascades and remodel chromatin structure. To reveal the underlying molecular mechanisms, methods outside classical biochemistry are required, in particular due to the combinational complexity of chromatin PTMs and the transient supramolecular interactions crucial for their recognition. Here, we develop a novel approach, where we synthesize arrays of chemically defined designer chromatin fibers and use dynamic multiplex single-molecule imaging to dissect multivalent signaling processes in chromatin. Our studies target a key pathway, the DNA damage response (DDR), which regulates DNA repair processes central to cell survival and is critically implicated in cancer. Detailed knowledge is of utmost importance to develop targeted therapeutic interventions. We thus employ advanced peptide and protein chemistry to generate libraries of chromatin fibers of a defined PTM state that is encoded in the chromatin DNA. With the library immobilized in a flow cell, we use single-molecule detection to directly observe signaling processes by key DDR effectors in real time. Subsequent in situ polony decoding allows the identification of each chromatin fiber’s modification state, enabling broad sampling of signaling outcomes. Finally, we use dynamic computational models to integrate the effector-chromatin interaction network and test key mechanisms in cancer-based cell culture. Together, these methods will yield fundamental insight into chromatin and DDR signaling and will be of broad use for chemical and biomedical research with applications beyond the chromatin field.
Summary
Transient multivalent interactions are critical for biological processes such as signaling pathways controlling chromatin function. Chromatin, the nucleoprotein complex organizing the genome, is dynamically regulated by post-translational modifications (PTMs) of the chromatin fiber. Protein effectors interact with combinations of these PTMs through multivalent interactions, deposit novel PTMs, thereby propagate signaling cascades and remodel chromatin structure. To reveal the underlying molecular mechanisms, methods outside classical biochemistry are required, in particular due to the combinational complexity of chromatin PTMs and the transient supramolecular interactions crucial for their recognition. Here, we develop a novel approach, where we synthesize arrays of chemically defined designer chromatin fibers and use dynamic multiplex single-molecule imaging to dissect multivalent signaling processes in chromatin. Our studies target a key pathway, the DNA damage response (DDR), which regulates DNA repair processes central to cell survival and is critically implicated in cancer. Detailed knowledge is of utmost importance to develop targeted therapeutic interventions. We thus employ advanced peptide and protein chemistry to generate libraries of chromatin fibers of a defined PTM state that is encoded in the chromatin DNA. With the library immobilized in a flow cell, we use single-molecule detection to directly observe signaling processes by key DDR effectors in real time. Subsequent in situ polony decoding allows the identification of each chromatin fiber’s modification state, enabling broad sampling of signaling outcomes. Finally, we use dynamic computational models to integrate the effector-chromatin interaction network and test key mechanisms in cancer-based cell culture. Together, these methods will yield fundamental insight into chromatin and DDR signaling and will be of broad use for chemical and biomedical research with applications beyond the chromatin field.
Max ERC Funding
1 999 815 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CICHLIDX
Project An integrative approach towards the understanding of an adaptive radiation of East African cichlid fishes
Researcher (PI) Walter Salzburger
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS8, ERC-2013-CoG
Summary "More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Summary
"More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Max ERC Funding
1 999 238 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CLUSTER
Project Birth of solids: atomic-scale processes in crystal nucleation
Researcher (PI) Rolf Erni
Host Institution (HI) EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary The goal of this project is to explore the fundamental processes which trigger the nucleation and growth of solids. Condensed matter is formed by clustering of atoms, ions or molecules. This initial step is key for the onset of crystallization, condensation and precipitate formation. Yet, despite of the scientific and technological significance of these phenomena, on an atomistic level we merely have expectations on how atoms should behave rather than experimental evidence about how the growth of solid matter is initiated. The classical nucleation theory is commonly in agreement with experiments, provided the original and the final stages are inspected qualitatively. However, the classical theory does not define what fundamentally constitutes a pre-nucleation state or how a nucleus is formed at all. CLUSTER aims at investigating the very early stages of crystalline matter formation on an unprecedented length scale. It shall explore the atomic mechanisms which prompt the formation of solids. Complemented by density functional theory calculations and molecular dynamics simulations, in-situ high-resolution electron microscopy shall be used to investigate the formation, dynamics, stability and evolution of tiniest atomic clusters which represent the embryos of solid matter. Firstly, we investigate the 3D structure of clusters deposited on suspended graphene. Secondly, we focus on cluster formation, the evolution of sub-critical nuclei and the onset of particle growth by thermal activation. Thirdly, using a novel liquid-cell approach in the transmission electron microscope, we control and monitor in-situ cluster formation and precipitation in supersaturated solutions. The results of CLUSTER, which will advance the understanding of the birth of solid matter, are important for the controlled synthesis of (nano-)materials, for cluster science and catalysis and for the development of novel materials.
Summary
The goal of this project is to explore the fundamental processes which trigger the nucleation and growth of solids. Condensed matter is formed by clustering of atoms, ions or molecules. This initial step is key for the onset of crystallization, condensation and precipitate formation. Yet, despite of the scientific and technological significance of these phenomena, on an atomistic level we merely have expectations on how atoms should behave rather than experimental evidence about how the growth of solid matter is initiated. The classical nucleation theory is commonly in agreement with experiments, provided the original and the final stages are inspected qualitatively. However, the classical theory does not define what fundamentally constitutes a pre-nucleation state or how a nucleus is formed at all. CLUSTER aims at investigating the very early stages of crystalline matter formation on an unprecedented length scale. It shall explore the atomic mechanisms which prompt the formation of solids. Complemented by density functional theory calculations and molecular dynamics simulations, in-situ high-resolution electron microscopy shall be used to investigate the formation, dynamics, stability and evolution of tiniest atomic clusters which represent the embryos of solid matter. Firstly, we investigate the 3D structure of clusters deposited on suspended graphene. Secondly, we focus on cluster formation, the evolution of sub-critical nuclei and the onset of particle growth by thermal activation. Thirdly, using a novel liquid-cell approach in the transmission electron microscope, we control and monitor in-situ cluster formation and precipitation in supersaturated solutions. The results of CLUSTER, which will advance the understanding of the birth of solid matter, are important for the controlled synthesis of (nano-)materials, for cluster science and catalysis and for the development of novel materials.
Max ERC Funding
2 271 250 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym CODOVIREVOL
Project Evolution of viral codon usage preferences:manipulation of translation accuracy and evasion of immune response
Researcher (PI) Ignacio González Bravo
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Fidelity during information transfer is essential for life, but it pays to be unfaithful if it provides an evolutionary advantage. The immune system continuously generates diversity to put up with recurrent pathogen challenges, and many viruses, in its turn, have evolved mechanisms to generate diversity to evade immune restrictions, even at the cost of enduring high mutation rates.
Synonymous codons are not used at random and are not translated with similar efficiency. A large proportion of viruses infecting humans, especially those causing chronic infections, display a poor adaptation to the codon usage preferences of their host. This observation is a paradox, as viral genes completely depend upon the cellular translation machinery for protein synthesis. The poor match between codon usage preferences of virus and host negatively affects speed and accuracy of viral protein translation. We propose here that maladaptation of codon usage preferences in human viruses may have an adaptive value as it decreases translational fidelity, results in the synthesis of an ill-defined population of viral proteins and provides a way to escape immune surveillance.
We will address the fitness effects of codon usage bias at the molecular and cellular levels, and later at the organism level in a rabbit model of papillomavirus infection. We will apply experimental evolution to analyse genotypic changes by means of next generation sequencing and will monitor phenotypic changes through real-time cell monitoring techniques, comparative proteomics, and anatomopathological analysis of virus-induced lesions.
Our results will help solve the evolutionary puzzle of codon usage bias, and will have implications for the development of therapeutic vaccines to guide the immune response towards the identification and targeting of the main protein species, avoiding the chemical noise generated by protein mistranslation.
Summary
Fidelity during information transfer is essential for life, but it pays to be unfaithful if it provides an evolutionary advantage. The immune system continuously generates diversity to put up with recurrent pathogen challenges, and many viruses, in its turn, have evolved mechanisms to generate diversity to evade immune restrictions, even at the cost of enduring high mutation rates.
Synonymous codons are not used at random and are not translated with similar efficiency. A large proportion of viruses infecting humans, especially those causing chronic infections, display a poor adaptation to the codon usage preferences of their host. This observation is a paradox, as viral genes completely depend upon the cellular translation machinery for protein synthesis. The poor match between codon usage preferences of virus and host negatively affects speed and accuracy of viral protein translation. We propose here that maladaptation of codon usage preferences in human viruses may have an adaptive value as it decreases translational fidelity, results in the synthesis of an ill-defined population of viral proteins and provides a way to escape immune surveillance.
We will address the fitness effects of codon usage bias at the molecular and cellular levels, and later at the organism level in a rabbit model of papillomavirus infection. We will apply experimental evolution to analyse genotypic changes by means of next generation sequencing and will monitor phenotypic changes through real-time cell monitoring techniques, comparative proteomics, and anatomopathological analysis of virus-induced lesions.
Our results will help solve the evolutionary puzzle of codon usage bias, and will have implications for the development of therapeutic vaccines to guide the immune response towards the identification and targeting of the main protein species, avoiding the chemical noise generated by protein mistranslation.
Max ERC Funding
1 997 100 €
Duration
Start date: 2016-01-01, End date: 2020-12-31