Project acronym IgYPurTech
Project IgY Technology: A Purification Platform using Ionic-Liquid-Based Aqueous Biphasic Systems
Researcher (PI) Mara Guadalupe Freire Martins
Host Institution (HI) UNIVERSIDADE DE AVEIRO
Country Portugal
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary With the emergence of antibiotic-resistant pathogens the development of antigen-specific antibodies for use in passive immunotherapy is, nowadays, a major concern in human society. Despite the most focused mammal antibodies, antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative option that can be obtained in higher titres by non-stressful and non-invasive methods. This large amount of available antibodies opens the door for a new kind of cheaper biopharmaceuticals. However, the production cost of high-quality IgY for large-scale applications remains higher than other drug therapies due to the lack of an efficient purification method. The search of new purification platforms is thus a vital demand to which liquid-liquid extraction using aqueous biphasic systems (ABS) could be the answer. Besides the conventional polymer-based systems, highly viscous and with a limited polarity/affinity range, a recent type of ABS composed of ionic liquids (ILs) may be employed. ILs are usually classified as “green solvents” due to their negligible vapour pressure. Yet, the major advantage of IL-based ABS relies on the possibility of tailoring their phases’ polarities aiming at extracting a target biomolecule. A proper manipulation of the system constituents and respective composition allows the pre-concentration, complete extraction, or purification of the most diverse biomolecules.
This research project addresses the development of a new technique for the extraction and purification of IgY from egg yolk using IL-based ABS. The proposed plan contemplates the optimization of purification systems at the laboratory scale and their use in countercurrent chromatography to achieve a simple, cost-effective and scalable process. The success of this project and its scalability to an industrial level certainly will allow the production of cheaper antibodies with a long-term impact in human healthcare.
Summary
With the emergence of antibiotic-resistant pathogens the development of antigen-specific antibodies for use in passive immunotherapy is, nowadays, a major concern in human society. Despite the most focused mammal antibodies, antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative option that can be obtained in higher titres by non-stressful and non-invasive methods. This large amount of available antibodies opens the door for a new kind of cheaper biopharmaceuticals. However, the production cost of high-quality IgY for large-scale applications remains higher than other drug therapies due to the lack of an efficient purification method. The search of new purification platforms is thus a vital demand to which liquid-liquid extraction using aqueous biphasic systems (ABS) could be the answer. Besides the conventional polymer-based systems, highly viscous and with a limited polarity/affinity range, a recent type of ABS composed of ionic liquids (ILs) may be employed. ILs are usually classified as “green solvents” due to their negligible vapour pressure. Yet, the major advantage of IL-based ABS relies on the possibility of tailoring their phases’ polarities aiming at extracting a target biomolecule. A proper manipulation of the system constituents and respective composition allows the pre-concentration, complete extraction, or purification of the most diverse biomolecules.
This research project addresses the development of a new technique for the extraction and purification of IgY from egg yolk using IL-based ABS. The proposed plan contemplates the optimization of purification systems at the laboratory scale and their use in countercurrent chromatography to achieve a simple, cost-effective and scalable process. The success of this project and its scalability to an industrial level certainly will allow the production of cheaper antibodies with a long-term impact in human healthcare.
Max ERC Funding
1 386 020 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym PICOMAT
Project Picometer scale insight and manipulation of novel materials
Researcher (PI) Jannik Christian Meyer
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary "The recent years have witnessed an explosive growth in the numbers of new materials with fascinating properties and high application potential. Two-dimensional materials are at the focus of interest, in particular graphene but also two-dimensional niobium diselenide, molybdenum disulfide, hexagonal boron nitride, mono-layer bismuth strontium calcium copper oxide, and a variety of other layered materials. This proposal builds on my recognized expertise and experience in the areas of atomically resolved studies and atomic level manipulation of new materials using electron beams in a transmission electron microscope. Instead of observing random, beam-driven or contamination-induced variations in image sequences, I plan to carry out targeted, controlled experiments to study atomic scale modifications in real time. I will establish new experimental approaches to study the properties of low-dimensional systems, light-element- and radiation-sensitive samples. The first key objective is controlled in-situ manipulation, via imposing chemical modifications that are locally activated by the electron beam and directly followed in real time. The second and strongly interlinked objective is to alleviate the effects of radiation damage by different new approaches (beyond low-voltage imaging), by making use of new statistical methods that exploit the multiplicity of identical configurations. I aim to transfer very recent developments for low-dose imaging from structural biology to the case of point defect configurations in a crystalline material, to allow the identification of atomic configurations that are currently not accessible as they do not withstand the electron dose that would be needed for their identification. Overall, this project will provide fundamental new insights to the science and applications of some of today's most promising new materials, new routes to tailor their properties, and methodological advances that will reach well beyond our target materials."
Summary
"The recent years have witnessed an explosive growth in the numbers of new materials with fascinating properties and high application potential. Two-dimensional materials are at the focus of interest, in particular graphene but also two-dimensional niobium diselenide, molybdenum disulfide, hexagonal boron nitride, mono-layer bismuth strontium calcium copper oxide, and a variety of other layered materials. This proposal builds on my recognized expertise and experience in the areas of atomically resolved studies and atomic level manipulation of new materials using electron beams in a transmission electron microscope. Instead of observing random, beam-driven or contamination-induced variations in image sequences, I plan to carry out targeted, controlled experiments to study atomic scale modifications in real time. I will establish new experimental approaches to study the properties of low-dimensional systems, light-element- and radiation-sensitive samples. The first key objective is controlled in-situ manipulation, via imposing chemical modifications that are locally activated by the electron beam and directly followed in real time. The second and strongly interlinked objective is to alleviate the effects of radiation damage by different new approaches (beyond low-voltage imaging), by making use of new statistical methods that exploit the multiplicity of identical configurations. I aim to transfer very recent developments for low-dose imaging from structural biology to the case of point defect configurations in a crystalline material, to allow the identification of atomic configurations that are currently not accessible as they do not withstand the electron dose that would be needed for their identification. Overall, this project will provide fundamental new insights to the science and applications of some of today's most promising new materials, new routes to tailor their properties, and methodological advances that will reach well beyond our target materials."
Max ERC Funding
1 468 279 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym QSuperMag
Project Harnessing Quantum Systems with Superconductivity and Magnetism
Researcher (PI) Josep Oriol Romero-Isart
Host Institution (HI) UNIVERSITAET INNSBRUCK
Country Austria
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary QSuperMag aims at using magnetic fields and superconductors to harness quantum degrees of freedom in order to make accessible an unprecedented parameter regime in the fields of quantum micro- and nanomechanical oscillators, quantum simulation with ultracold atoms, and solid-state quantum information processing. The goal is to establish a new paradigm in quantum optics by replacing laser light with magnetic fields, and especially, superconductors.
Laser light has been the ubiquitous tool in the last decades to control and manipulate quantum systems because it is fast, coherent, and can be focused to address individual degrees of freedom. However, the use of lasers poses fundamental limitations, such as heating and decoherence due to scattering and absorption of photons, and a minimum length-scale to achieve coherent control due to the diffraction limit. The main goal of QSuperMag is to circumvent these limitations by using magnetic fields and superconductors to harness quantum systems that are traditionally controlled and addressed by laser light. This will be done by developing new theory and proposing experiments which lie at the interplay between the fields of quantum science and superconductivity.
QSuperMag’s goals are to:
-Propose cutting-edge experiments in the field of quantum micromechanical systems. This will be achieved by exploiting the unique features of our recent proposal for quantum magnetomechanics using magnetically-levitated superconducting microspheres [ORI et al. PRL 109, 11013 (2012)].
-Put forward a magnetic nanolattice for ultracold atoms in which the distance between lattice sites is of the order of few tens of nanometers. Together with a magnetic toolbox this will place the field of quantum simulation in a radically new scenario.
-Use superconductors to enhance the coupling of remote magnetic dipoles in order to design an all-magnetic quantum information processor in diamond. This will also have relevant technological applications.

Summary
QSuperMag aims at using magnetic fields and superconductors to harness quantum degrees of freedom in order to make accessible an unprecedented parameter regime in the fields of quantum micro- and nanomechanical oscillators, quantum simulation with ultracold atoms, and solid-state quantum information processing. The goal is to establish a new paradigm in quantum optics by replacing laser light with magnetic fields, and especially, superconductors.
Laser light has been the ubiquitous tool in the last decades to control and manipulate quantum systems because it is fast, coherent, and can be focused to address individual degrees of freedom. However, the use of lasers poses fundamental limitations, such as heating and decoherence due to scattering and absorption of photons, and a minimum length-scale to achieve coherent control due to the diffraction limit. The main goal of QSuperMag is to circumvent these limitations by using magnetic fields and superconductors to harness quantum systems that are traditionally controlled and addressed by laser light. This will be done by developing new theory and proposing experiments which lie at the interplay between the fields of quantum science and superconductivity.
QSuperMag’s goals are to:
-Propose cutting-edge experiments in the field of quantum micromechanical systems. This will be achieved by exploiting the unique features of our recent proposal for quantum magnetomechanics using magnetically-levitated superconducting microspheres [ORI et al. PRL 109, 11013 (2012)].
-Put forward a magnetic nanolattice for ultracold atoms in which the distance between lattice sites is of the order of few tens of nanometers. Together with a magnetic toolbox this will place the field of quantum simulation in a radically new scenario.
-Use superconductors to enhance the coupling of remote magnetic dipoles in order to design an all-magnetic quantum information processor in diamond. This will also have relevant technological applications.

Max ERC Funding
1 293 483 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym SPAJORANA
Project Towards spin qubits and Majorana fermions in Germanium self-assembled hut-wires
Researcher (PI) Georgios Katsaros
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2013-StG
Summary A renewed interest in Ge has been sparked by the prospects of exploiting its lower effective mass and higher hole mobility to improve the performance of transistors. Ge emerges also as a promising material in the field of spin qubits, as its coherence times are expected to be very long. Finally, it has been proposed that strained Ge nanowires show an unusually large spin orbit interaction, making them thus suitable for the realization of Majorana fermions. In view of these facts, one is able to envision a new era of Ge in information technology.
The growth of Ge nanocrystals on Si was reported for the first time in 1990. This created great expectations that such structures could provide a valid route towards innovative, scalable and CMOS-compatible nanodevices. Two decades later the PI was able to realize the first devices based on such structures. His results show that Ge self-assembled quantum dots display a unique combination of electronic properties, i.e. low hyperfine interaction, strong and tunable spin-orbit coupling and spin selective tunneling. In 2012, the PI’s group went a step further and realized for the first time Ge nanowires monolithically integrated on Si substrates, which will allow the PI to move towards double quantum dots and Majorana fermions. In view of their exceptionally small cross section, these Ge wires hold promise for the realization of hole systems with exotic properties.
Within this project, these new wires will be investigated, both as spin as well as topological qubits. The objective of the present proposal is mainly to: a) study spin-injection by means of normal and superconducting contacts, b) study the characteristic time scales for spin dynamics and move towards electrical spin manipulation of holes, c) observe Majorana fermions in a p-type system. The PI’s vision is to couple spin and topological qubits in one “technological platform” enabling thus the coherent transfer of quantum information between them.
Summary
A renewed interest in Ge has been sparked by the prospects of exploiting its lower effective mass and higher hole mobility to improve the performance of transistors. Ge emerges also as a promising material in the field of spin qubits, as its coherence times are expected to be very long. Finally, it has been proposed that strained Ge nanowires show an unusually large spin orbit interaction, making them thus suitable for the realization of Majorana fermions. In view of these facts, one is able to envision a new era of Ge in information technology.
The growth of Ge nanocrystals on Si was reported for the first time in 1990. This created great expectations that such structures could provide a valid route towards innovative, scalable and CMOS-compatible nanodevices. Two decades later the PI was able to realize the first devices based on such structures. His results show that Ge self-assembled quantum dots display a unique combination of electronic properties, i.e. low hyperfine interaction, strong and tunable spin-orbit coupling and spin selective tunneling. In 2012, the PI’s group went a step further and realized for the first time Ge nanowires monolithically integrated on Si substrates, which will allow the PI to move towards double quantum dots and Majorana fermions. In view of their exceptionally small cross section, these Ge wires hold promise for the realization of hole systems with exotic properties.
Within this project, these new wires will be investigated, both as spin as well as topological qubits. The objective of the present proposal is mainly to: a) study spin-injection by means of normal and superconducting contacts, b) study the characteristic time scales for spin dynamics and move towards electrical spin manipulation of holes, c) observe Majorana fermions in a p-type system. The PI’s vision is to couple spin and topological qubits in one “technological platform” enabling thus the coherent transfer of quantum information between them.
Max ERC Funding
1 675 020 €
Duration
Start date: 2014-01-01, End date: 2018-12-31