Project acronym 2D4D
Project Disruptive Digitalization for Decarbonization
Researcher (PI) Elena Verdolini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI BRESCIA
Country Italy
Call Details Starting Grant (StG), SH2, ERC-2019-STG
Summary By 2040, all major sectors of the European economy will be deeply digitalized. By then, the EU aims at reducing greenhouse gas emissions by 60% with respect to 1990 levels. Digitalization will affect decarbonization efforts because of its impacts on energy demand, employment, competitiveness, trade patterns and its distributional, behavioural and ethical implications. Yet, the policy debates around these two transformations are largely disjoint.
The aim of the 2D4D project is ensure that the digital revolution acts as an enabler – and not as a barrier – for decarbonization. The project quantifies the decarbonization implications of three disruptive digitalization technologies in hard-to-decarbonize sectors: (1) Additive Manufacturing in industry, (2) Mobility-as-a-Service in transportation, and (3) Artificial Intelligence in buildings.
The first objective of 2D4D is to generate a one-of-a-kind data collection to investigate the technical and socio-economic dynamics of these technologies, and how they may affect decarbonization narratives and scenarios. This will be achieved through several data collection methods, including desk research, surveys and expert elicitations.
The second objective of 2D4D is to include digitalization dynamics in decarbonization narratives and pathways. On the one hand, this entails enhancing decarbonization narratives (specifically, the Shared Socio-economic Pathways) to describe digitalization dynamics. On the other hand, it requires improving the representation of sector-specific digitalization dynamics in Integrated Assessment Models, one of the main tools available to generate decarbonization pathways.
The third objective of 2D4D is to identify no-regret, robust policy portfolios. These will be designed to ensure that digitalization unfolds in an inclusive, climate-beneficial way, and that decarbonization policies capitalize on digital technologies to support the energy transition.
Summary
By 2040, all major sectors of the European economy will be deeply digitalized. By then, the EU aims at reducing greenhouse gas emissions by 60% with respect to 1990 levels. Digitalization will affect decarbonization efforts because of its impacts on energy demand, employment, competitiveness, trade patterns and its distributional, behavioural and ethical implications. Yet, the policy debates around these two transformations are largely disjoint.
The aim of the 2D4D project is ensure that the digital revolution acts as an enabler – and not as a barrier – for decarbonization. The project quantifies the decarbonization implications of three disruptive digitalization technologies in hard-to-decarbonize sectors: (1) Additive Manufacturing in industry, (2) Mobility-as-a-Service in transportation, and (3) Artificial Intelligence in buildings.
The first objective of 2D4D is to generate a one-of-a-kind data collection to investigate the technical and socio-economic dynamics of these technologies, and how they may affect decarbonization narratives and scenarios. This will be achieved through several data collection methods, including desk research, surveys and expert elicitations.
The second objective of 2D4D is to include digitalization dynamics in decarbonization narratives and pathways. On the one hand, this entails enhancing decarbonization narratives (specifically, the Shared Socio-economic Pathways) to describe digitalization dynamics. On the other hand, it requires improving the representation of sector-specific digitalization dynamics in Integrated Assessment Models, one of the main tools available to generate decarbonization pathways.
The third objective of 2D4D is to identify no-regret, robust policy portfolios. These will be designed to ensure that digitalization unfolds in an inclusive, climate-beneficial way, and that decarbonization policies capitalize on digital technologies to support the energy transition.
Max ERC Funding
1 498 375 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Country Italy
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2023-08-31
Project acronym ABINITIODGA
Project Ab initio Dynamical Vertex Approximation
Researcher (PI) Karsten Held
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Summary
Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Max ERC Funding
1 491 090 €
Duration
Start date: 2013-01-01, End date: 2018-07-31
Project acronym ACTIVENP
Project Active and low loss nano photonics (ActiveNP)
Researcher (PI) Thomas Arno Klar
Host Institution (HI) UNIVERSITAT LINZ
Country Austria
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Summary
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Max ERC Funding
1 494 756 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym AdjustNet
Project Self-Adjusting Networks
Researcher (PI) Stefan SCHMID
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Consolidator Grant (CoG), PE6, ERC-2019-COG
Summary Communication networks have become a critical infrastructure of our digital society. However, with the explosive growth of data-centric applications and the resulting increasing workloads headed for the world’s datacenter networks, today’s static and demand-oblivious network architectures are reaching their capacity limits.
The AdjustNet project proposes a radically different perspective, envisioning demand-aware networks which can dynamically adapt their topology to the workload they currently serve. Such self-adjusting networks hence allow to exploit structure in the demand, and thereby reach higher levels of efficiency and performance. The vision of AdjustNet is timely and enabled by recent innovations in optical technologies which allow to flexibly reconfigure the physical network topology.
The goal of AdjustNet is to lay the theoretical foundations for self-adjusting networks. We will identify metrics that serve as yardstick of what can and cannot be achieved in a self-adjusting network for a given demand, devise algorithms for online adaption, and validate our framework through case studies. Our novel methodology is motivated by an intriguing connection of self-adjusting networks to known datastructures and to information theory.
AdjustNet comes with significant challenges since, similar to self-driving cars, self-adjusting networks require human network operators to give away control, and since more autonomous network operations may lead to instabilities. AdjustNet will overcome these risks and achieve its objectives by pursuing a rigorous approach, devising a theoretical well-founded framework for self-adjusting networks which come with provable guarantees and incorporate self–protection mechanisms.
The PI is well-equipped for this project and recently obtained first promising results. As the community is currently re-architecting communication networks, there is a unique opportunity to bridge the gap between theory and practice, and have impact.
Summary
Communication networks have become a critical infrastructure of our digital society. However, with the explosive growth of data-centric applications and the resulting increasing workloads headed for the world’s datacenter networks, today’s static and demand-oblivious network architectures are reaching their capacity limits.
The AdjustNet project proposes a radically different perspective, envisioning demand-aware networks which can dynamically adapt their topology to the workload they currently serve. Such self-adjusting networks hence allow to exploit structure in the demand, and thereby reach higher levels of efficiency and performance. The vision of AdjustNet is timely and enabled by recent innovations in optical technologies which allow to flexibly reconfigure the physical network topology.
The goal of AdjustNet is to lay the theoretical foundations for self-adjusting networks. We will identify metrics that serve as yardstick of what can and cannot be achieved in a self-adjusting network for a given demand, devise algorithms for online adaption, and validate our framework through case studies. Our novel methodology is motivated by an intriguing connection of self-adjusting networks to known datastructures and to information theory.
AdjustNet comes with significant challenges since, similar to self-driving cars, self-adjusting networks require human network operators to give away control, and since more autonomous network operations may lead to instabilities. AdjustNet will overcome these risks and achieve its objectives by pursuing a rigorous approach, devising a theoretical well-founded framework for self-adjusting networks which come with provable guarantees and incorporate self–protection mechanisms.
The PI is well-equipped for this project and recently obtained first promising results. As the community is currently re-architecting communication networks, there is a unique opportunity to bridge the gap between theory and practice, and have impact.
Max ERC Funding
1 670 823 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym AFDMATS
Project Anton Francesco Doni – Multimedia Archive Texts and Sources
Researcher (PI) Giovanna Rizzarelli
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Country Italy
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Summary
This project aims at creating a multimedia archive of the printed works of Anton Francesco Doni, who was not only an author but also a typographer, a publisher and a member of the Giolito and Marcolini’s editorial staff. The analysis of Doni’s work may be a good way to investigate appropriation, text rewriting and image reusing practices which are typical of several authors of the 16th Century, as clearly shown by the critics in the last decades. This project intends to bring to light the wide range of impulses from which Doni’s texts are generated, with a great emphasis on the figurative aspect. The encoding of these texts will be carried out using the TEI (Text Encoding Initiative) guidelines, which will enable any single text to interact with a range of intertextual references both at a local level (inside the same text) and at a macrostructural level (references to other texts by Doni or to other authors). The elements that will emerge from the textual encoding concern: A) The use of images Real images: the complex relation between Doni’s writing and the xylographies available in Marcolini’s printing-house or belonging to other collections. Mental images: the remarkable presence of verbal images, as descriptions, ekphràseis, figurative visions, dreams and iconographic allusions not accompanied by illustrations, but related to a recognizable visual repertoire or to real images that will be reproduced. B) The use of sources A parallel archive of the texts most used by Doni will be created. Digital anastatic reproductions of the 16th-Century editions known by Doni will be provided whenever available. The various forms of intertextuality will be divided into the following typologies: allusions; citations; rewritings; plagiarisms; self-quotations. Finally, the different forms of narrative (tales, short stories, anecdotes, lyrics) and the different idiomatic expressions (proverbial forms and wellerisms) will also be encoded.
Max ERC Funding
559 200 €
Duration
Start date: 2008-08-01, End date: 2012-07-31
Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Country Finland
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ALEM
Project ADDITIONAL LOSSES IN ELECTRICAL MACHINES
Researcher (PI) Matti Antero Arkkio
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary "Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Summary
"Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Max ERC Funding
2 489 949 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ALGOCom
Project Novel Algorithmic Techniques through the Lens of Combinatorics
Researcher (PI) Parinya Chalermsook
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Starting Grant (StG), PE6, ERC-2017-STG
Summary Real-world optimization problems pose major challenges to algorithmic research. For instance, (i) many important problems are believed to be intractable (i.e. NP-hard) and (ii) with the growth of data size, modern applications often require a decision making under {\em incomplete and dynamically changing input data}. After several decades of research, central problems in these domains have remained poorly understood (e.g. Is there an asymptotically most efficient binary search trees?) Existing algorithmic techniques either reach their limitation or are inherently tailored to special cases.
This project attempts to untangle this gap in the state of the art and seeks new interplay across multiple areas of algorithms, such as approximation algorithms, online algorithms, fixed-parameter tractable (FPT) algorithms, exponential time algorithms, and data structures. We propose new directions from the {\em structural perspectives} that connect the aforementioned algorithmic problems to basic questions in combinatorics.
Our approaches fall into one of the three broad schemes: (i) new structural theory, (ii) intermediate problems, and (iii) transfer of techniques. These directions partially build on the PI's successes in resolving more than ten classical problems in this context.
Resolving the proposed problems will likely revolutionize our understanding about algorithms and data structures and potentially unify techniques in multiple algorithmic regimes. Any progress is, in fact, already a significant contribution to the algorithms community. We suggest concrete intermediate goals that are of independent interest and have lower risks, so they are suitable for Ph.D students.
Summary
Real-world optimization problems pose major challenges to algorithmic research. For instance, (i) many important problems are believed to be intractable (i.e. NP-hard) and (ii) with the growth of data size, modern applications often require a decision making under {\em incomplete and dynamically changing input data}. After several decades of research, central problems in these domains have remained poorly understood (e.g. Is there an asymptotically most efficient binary search trees?) Existing algorithmic techniques either reach their limitation or are inherently tailored to special cases.
This project attempts to untangle this gap in the state of the art and seeks new interplay across multiple areas of algorithms, such as approximation algorithms, online algorithms, fixed-parameter tractable (FPT) algorithms, exponential time algorithms, and data structures. We propose new directions from the {\em structural perspectives} that connect the aforementioned algorithmic problems to basic questions in combinatorics.
Our approaches fall into one of the three broad schemes: (i) new structural theory, (ii) intermediate problems, and (iii) transfer of techniques. These directions partially build on the PI's successes in resolving more than ten classical problems in this context.
Resolving the proposed problems will likely revolutionize our understanding about algorithms and data structures and potentially unify techniques in multiple algorithmic regimes. Any progress is, in fact, already a significant contribution to the algorithms community. We suggest concrete intermediate goals that are of independent interest and have lower risks, so they are suitable for Ph.D students.
Max ERC Funding
1 411 258 €
Duration
Start date: 2018-02-01, End date: 2024-01-31
Project acronym ALICE
Project Strange Mirrors, Unsuspected Lessons: Leading Europe to a new way of sharing the world experiences
Researcher (PI) Boaventura De Sousa Santos
Host Institution (HI) CENTRO DE ESTUDOS SOCIAIS
Country Portugal
Call Details Advanced Grant (AdG), SH2, ERC-2010-AdG_20100407
Summary Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Summary
Europe sits uncomfortably on the idea that there are no political and cultural alternatives credible enough to respond to the current uneasiness or malaise caused by both a world that is more and more non-European and a Europe that increasingly questions what is European about itself. This project will develop a new grounded theoretical paradigm for contemporary Europe based on two key ideas: the understanding of the world by far exceeds the European understanding of the world; social, political and institutional transformation in Europe may benefit from innovations taking place in regions and countries with which Europe is increasingly interdependent. I will pursue this objective focusing on four main interconnected topics: democratizing democracy, intercultural constitutionalism, the other economy, human rights (right to health in particular).
In a sense that the European challenges are unique but, in one way or another, are being experienced in different corners of the world. The novelty resides in bringing new ideas and experiences into the European conversation, show their relevance to our current uncertainties and aspirations and thereby contribute to face them with new intellectual and political resources. The usefulness and relevance of non-European conceptions and experiences un-thinking the conventional knowledge through two epistemological devices I have developed: the ecology of knowledges and intercultural translation. By resorting to them I will show that there are alternatives but they cannot be made credible and powerful if we go on relying on the modes of theoretical and political thinking that have dominated so far. In other words, the claim put forward by and worked through this project is that in Europe we don’t need alternatives but rather an alternative thinking of alternatives.
Max ERC Funding
2 423 140 €
Duration
Start date: 2011-07-01, End date: 2016-12-31