Project acronym 9 SALT
Project Reassessing Ninth Century Philosophy. A Synchronic Approach to the Logical Traditions
Researcher (PI) Christophe Florian Erismann
Host Institution (HI) UNIVERSITAT WIEN
Country Austria
Call Details Consolidator Grant (CoG), SH5, ERC-2014-CoG
Summary This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Summary
This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Max ERC Funding
1 998 566 €
Duration
Start date: 2015-09-01, End date: 2021-02-28
Project acronym AdriArchCult
Project Architectural Culture of the Early Modern Eastern Adriatic
Researcher (PI) Jasenka Gudelj
Host Institution (HI) UNIVERSITA CA' FOSCARI VENEZIA
Country Italy
Call Details Consolidator Grant (CoG), SH5, ERC-2019-COG
Summary During the 15th century, the political process of reducing the Eastern Adriatic, here considered as encompassing what is now littoral of Slovenia, Croatia and Montenegro, to a thin strip of border territories substantially separated from the continental massive to which they belong, reached its conclusion. The insularity of its large natural archipelago, i.e. almost exclusive dependence on the maritime communications, became characteristic even of mainland coastal towns, with lasting consequences. The project explores the impact of this change in the area between 15th and 18th c., focusing on architecture as the most evident materialization of a culture and its transformations. The goal is to examine the architectural culture in question in terms of both consumption and production. Factors such as political and economic consolidation of Venetian and Dubrovnik Republics as well as Habsburg Empire in the area, war and commerce with the Ottomans, but also the quick spread of revival of antiquity and the Catholic Revival, all fuelled the need for architectural creation with certain functional and symbolic characteristics, setting the cultural standards. On the other hand, the economics of production of architecture consisted of interrelated systems of the provision of materials (esp. Istrian stone) and organisation of construction sites, which, given the ease of the sea transport, resulted in an active market for architectural goods. This approach will provide an original contribution to the understanding of cultural practices that not only produced specific buildings, the most significant among which are now listed as World Heritage sites but also put into circulation ancient and modern models, techniques and materials for a European-wide audience. Moreover, it will investigate the trans-border and trans-confessional character of the architectural market, thus providing an innovative model for a study of such phenomena across Europe.
Summary
During the 15th century, the political process of reducing the Eastern Adriatic, here considered as encompassing what is now littoral of Slovenia, Croatia and Montenegro, to a thin strip of border territories substantially separated from the continental massive to which they belong, reached its conclusion. The insularity of its large natural archipelago, i.e. almost exclusive dependence on the maritime communications, became characteristic even of mainland coastal towns, with lasting consequences. The project explores the impact of this change in the area between 15th and 18th c., focusing on architecture as the most evident materialization of a culture and its transformations. The goal is to examine the architectural culture in question in terms of both consumption and production. Factors such as political and economic consolidation of Venetian and Dubrovnik Republics as well as Habsburg Empire in the area, war and commerce with the Ottomans, but also the quick spread of revival of antiquity and the Catholic Revival, all fuelled the need for architectural creation with certain functional and symbolic characteristics, setting the cultural standards. On the other hand, the economics of production of architecture consisted of interrelated systems of the provision of materials (esp. Istrian stone) and organisation of construction sites, which, given the ease of the sea transport, resulted in an active market for architectural goods. This approach will provide an original contribution to the understanding of cultural practices that not only produced specific buildings, the most significant among which are now listed as World Heritage sites but also put into circulation ancient and modern models, techniques and materials for a European-wide audience. Moreover, it will investigate the trans-border and trans-confessional character of the architectural market, thus providing an innovative model for a study of such phenomena across Europe.
Max ERC Funding
1 999 750 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Country Italy
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary "The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a ""pseudo-science"", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly."
Summary
"The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a ""pseudo-science"", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly."
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym AMI
Project Animals Make identities. The Social Bioarchaeology of Late Mesolithic and Early Neolithic Cemeteries in North-East Europe
Researcher (PI) Kristiina MANNERMAA
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), SH6, ERC-2019-COG
Summary AMI aims to provide a novel interpretation of social links between humans and animals in hunter-gatherer cemeteries in North-East Europe, c. 9000–7500 years ago. AMI brings together cutting-edge developments in bioarchaeological science and the latest understanding of how people’s identities form in order to study the relationships between humans and animals. Grave materials and human remains will be studied from the viewpoint of process rather than as isolated objects, and will be interpreted through their histories.
The main objectives are
1) Synthesize the animal related bioarchaeological materials in mortuary contexts in North-East Europe,
2) Conduct a systematic multimethodological analysis of the animal-derived artefacts and to study them as actors in human social identity construction,
3) Reconstruct the individual life histories of humans, animals, and animal-derived artefacts in the cemeteries, and
4) Produce models for the reconstruction of social identities based on the data from the bioanalyses, literature, and GIS.
Various contextual, qualitative and quantitative biodata from animals and humans will be analysed and compared. Correlations and differences will be explored. Intra-site spatial analyses and data already published on cemeteries will contribute significantly to the research. Ethnographic information about recent hunter-gatherers from circumpolar regions gathered from literature will support the interpretation of the results from these analyses.
The research material derives from almost 300 burials from eight sites in North-East Europe and includes, for example, unique materials from Russia that have not previously been available for modern multidisciplinary research. The project will make a significant contribution to our understanding of how humans living in the forests of North-East Europe adapted the animals they shared their environment with into their social and ideological realities and practices.
Summary
AMI aims to provide a novel interpretation of social links between humans and animals in hunter-gatherer cemeteries in North-East Europe, c. 9000–7500 years ago. AMI brings together cutting-edge developments in bioarchaeological science and the latest understanding of how people’s identities form in order to study the relationships between humans and animals. Grave materials and human remains will be studied from the viewpoint of process rather than as isolated objects, and will be interpreted through their histories.
The main objectives are
1) Synthesize the animal related bioarchaeological materials in mortuary contexts in North-East Europe,
2) Conduct a systematic multimethodological analysis of the animal-derived artefacts and to study them as actors in human social identity construction,
3) Reconstruct the individual life histories of humans, animals, and animal-derived artefacts in the cemeteries, and
4) Produce models for the reconstruction of social identities based on the data from the bioanalyses, literature, and GIS.
Various contextual, qualitative and quantitative biodata from animals and humans will be analysed and compared. Correlations and differences will be explored. Intra-site spatial analyses and data already published on cemeteries will contribute significantly to the research. Ethnographic information about recent hunter-gatherers from circumpolar regions gathered from literature will support the interpretation of the results from these analyses.
The research material derives from almost 300 burials from eight sites in North-East Europe and includes, for example, unique materials from Russia that have not previously been available for modern multidisciplinary research. The project will make a significant contribution to our understanding of how humans living in the forests of North-East Europe adapted the animals they shared their environment with into their social and ideological realities and practices.
Max ERC Funding
1 992 839 €
Duration
Start date: 2020-04-01, End date: 2025-03-31
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ArmEn
Project Armenia Entangled: Connectivity and Cultural Encounters in Medieval Eurasia
Researcher (PI) Zaroui POGOSSIAN
Host Institution (HI) UNIVERSITA DEGLI STUDI DI FIRENZE
Country Italy
Call Details Consolidator Grant (CoG), SH6, ERC-2019-COG
Summary ArmEn seeks to establish a new framework for studying the southern Caucasus, eastern Anatolia and northern Mesopotamia (CAM) as a space of cultural entanglements between the 9th to 14th centuries. It argues that this region is key to understanding the history of medieval Eurasia but has so far been completely neglected by the burgeoning field of Global Middle Ages. The CAM was on the crossroads of expanding Eurasian empires and population movements, but was removed from major hubs of power. Poly-centrism; political, ethno-linguistic, and religious heterogeneity; frequently shifting hegemonic hierarchies were key aspects of its, nevertheless, inter-connected landscape. This fluidity and complexity left its mark on the cultural products – textual and material – created in the CAM. ArmEn aims to trace shared features in the multi-lingual textual and artistic production of CAM and correlate them to the circulation of ideas and concepts, as well as to real-life interactions, between multiple groups, identifying the locations and agents of entanglements. The large but under-utilised body of Armenian sources to be explored together with those in Arabic, Georgian, Greek, Persian, Syriac, and Turkish, will illuminate cultural entanglements between Muslim and Christian Arabs, Byzantines, Syriac Christians, Georgians, Caucasian Albanians, Turko-Muslim dynasties, Kurds, Iranians, Western Europeans, and Mongols, that inhabited, conquered, or passed through and produced cultural goods in CAM. Evidence from manuscript illuminations and numismatics will provide a material cultural dimension to the analysis. ArmEn will create a trans-cultural vision of the CAM, bridging area studies into a unifying framework, bringing together various disciplinary approaches (philology, literary criticism, religious studies, art history, numismatics, etc.), to build a narrative synthesis in which the dynamics of cross-cultural entanglements in the CAM emerge in their spatial and temporal dimensions.
Summary
ArmEn seeks to establish a new framework for studying the southern Caucasus, eastern Anatolia and northern Mesopotamia (CAM) as a space of cultural entanglements between the 9th to 14th centuries. It argues that this region is key to understanding the history of medieval Eurasia but has so far been completely neglected by the burgeoning field of Global Middle Ages. The CAM was on the crossroads of expanding Eurasian empires and population movements, but was removed from major hubs of power. Poly-centrism; political, ethno-linguistic, and religious heterogeneity; frequently shifting hegemonic hierarchies were key aspects of its, nevertheless, inter-connected landscape. This fluidity and complexity left its mark on the cultural products – textual and material – created in the CAM. ArmEn aims to trace shared features in the multi-lingual textual and artistic production of CAM and correlate them to the circulation of ideas and concepts, as well as to real-life interactions, between multiple groups, identifying the locations and agents of entanglements. The large but under-utilised body of Armenian sources to be explored together with those in Arabic, Georgian, Greek, Persian, Syriac, and Turkish, will illuminate cultural entanglements between Muslim and Christian Arabs, Byzantines, Syriac Christians, Georgians, Caucasian Albanians, Turko-Muslim dynasties, Kurds, Iranians, Western Europeans, and Mongols, that inhabited, conquered, or passed through and produced cultural goods in CAM. Evidence from manuscript illuminations and numismatics will provide a material cultural dimension to the analysis. ArmEn will create a trans-cultural vision of the CAM, bridging area studies into a unifying framework, bringing together various disciplinary approaches (philology, literary criticism, religious studies, art history, numismatics, etc.), to build a narrative synthesis in which the dynamics of cross-cultural entanglements in the CAM emerge in their spatial and temporal dimensions.
Max ERC Funding
1 999 994 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym BHIVE
Project Bio-derived HIgh Value polymers through novel Enzyme function
Researcher (PI) Emma Rusi Master
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Summary
Recent advances in systems-level study of cells and organisms have revealed the enormous potential to live more sustainably through better use of biological processes. Plants sustainably synthesize the most abundant and diverse materials on Earth. By applying recent advances in life science technology, we can better harness renewable plant resources and bioconversion processes, to develop environmentally and politically sustainable human enterprise and lifestyles. At the same time, the global market for high-value biochemicals and bioplastics from forest and agricultural sources is rapidly increasing, which presents new opportunities for forest and agricultural sectors.
The overall aim of BHIVE is to illuminate uncharted regions of genome and metagenome sequences to discover entirely new protein families that can be used to sustainably synthesize novel, high-value biomaterials from renewable plant resources. The approach will include three parallel research thrusts: 1) strategic analysis of transcriptome and metagenome sequences to identify proteins with entirely unknown function relevant to biomass (lignocellulose) transformation, 2) mapping of uncharted regions within phylogenetic trees of poorly characterized enzyme families with recognized potential to modify the chemistry and biophysical properties of plant polysaccharides, and 3) the design and development of novel enzyme screens to directly address the increasing limitations of existing assays to uncover entirely new protein functions. BHIVE will be unique in its undivided focus on characterizing lignocellulose-active proteins encoded by the 30-40% of un-annotated sequence, or genomic “dark matter”, typical of nearly all genome sequences. In this way, BHIVE tackles a key constraint to fully realizing the societal and environmental benefits of the genomics era.
Max ERC Funding
1 977 781 €
Duration
Start date: 2015-09-01, End date: 2020-12-31
Project acronym BioDisOrder
Project Order and Disorder at the Surface of Biological Membranes.
Researcher (PI) Alfonso DE SIMONE
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Country Italy
Call Details Consolidator Grant (CoG), PE4, ERC-2018-COG
Summary Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Summary
Heterogeneous biomolecular mechanisms at the surface of cellular membranes are often fundamental to generate function and dysfunction in living systems. These processes are governed by transient and dynamical macromolecular interactions that pose tremendous challenges to current analytical tools, as the majority of these methods perform best in the study of well-defined and poorly dynamical systems. This proposal aims at a radical innovation in the characterisation of complex processes that are dominated by structural order and disorder, including those occurring at the surface of biological membranes such as cellular signalling, the assembly of molecular machinery, or the regulation vesicular trafficking.
I outline a programme to realise a vision where the combination of experiments and theory can delineate a new analytical platform to study complex biochemical mechanisms at a multiscale level, and to elucidate their role in physiological and pathological contexts. To achieve this ambitious goal, my research team will develop tools based on the combination of nuclear magnetic resonance (NMR) spectroscopy and molecular simulations, which will enable probing the structure, dynamics, thermodynamics and kinetics of complex protein-protein and protein-membrane interactions occurring at the surface of cellular membranes. The ability to advance both the experimental and theoretical sides, and their combination, is fundamental to define the next generation of methods to achieve our transformative aims. We will provide evidence of the innovative nature of the proposed multiscale approach by addressing some of the great questions in neuroscience and elucidate the details of how functional and aberrant biological complexity is achieved via the fine tuning between structural order and disorder at the neuronal synapse.
Max ERC Funding
1 999 945 €
Duration
Start date: 2019-06-01, End date: 2024-11-30
Project acronym BIORECAR
Project Direct cell reprogramming therapy in myocardial regeneration through an engineered multifunctional platform integrating biochemical instructive cues
Researcher (PI) Valeria CHIONO
Host Institution (HI) POLITECNICO DI TORINO
Country Italy
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary In BIORECAR I will develop a new breakthrough multifunctional biomaterial-based platform for myocardial regeneration after myocardial infarction, provided with biochemical cues able to enhance the direct reprogramming of human cardiac fibroblasts into functional cardiomyocytes.
My expertise in bioartificial materials and biomimetic scaffolds and the versatile chemistry of polyurethanes will be the key elements to achieve a significant knowledge and technological advancement in cell reprogramming therapy, opening the way to the future translation of the therapy into the clinics.
I will implement this advanced approach through the design of a novel 3D in vitro tissue-engineered model of human cardiac fibrotic tissue, as a tool for testing and validation, to maximise research efforts and reduce animal tests.
I will adapt novel nanomedicine approaches I have recently developed for drug release to design innovative cell-friendly and efficient polyurethane nanoparticles for targeted reprogramming of cardiac fibroblasts.
I will design an injectable bioartificial hydrogel based on a blend of a thermosensitive polyurethane and a natural component selected among a novel cell-secreted natural polymer mixture (“biomatrix”) recapitulating the complexity of cardiac extracellular matrix or one of its main protein constituents. Such multifunctional hydrogel will deliver in situ agents stimulating recruitment of cardiac fibroblasts together with the nanoparticles loaded with reprogramming therapeutics, and will provide biochemical signalling to stimulate efficient conversion of fibroblasts into mature cardiomyocytes.
First-in-field biomaterials-based innovations introduced by BIORECAR will enable more effective regeneration of functional myocardial tissue respect to state-of-the art approaches. BIORECAR innovation is multidisciplinary in nature and will be accelerated towards future clinical translation through my clinical, scientific and industrial collaborations.
Summary
In BIORECAR I will develop a new breakthrough multifunctional biomaterial-based platform for myocardial regeneration after myocardial infarction, provided with biochemical cues able to enhance the direct reprogramming of human cardiac fibroblasts into functional cardiomyocytes.
My expertise in bioartificial materials and biomimetic scaffolds and the versatile chemistry of polyurethanes will be the key elements to achieve a significant knowledge and technological advancement in cell reprogramming therapy, opening the way to the future translation of the therapy into the clinics.
I will implement this advanced approach through the design of a novel 3D in vitro tissue-engineered model of human cardiac fibrotic tissue, as a tool for testing and validation, to maximise research efforts and reduce animal tests.
I will adapt novel nanomedicine approaches I have recently developed for drug release to design innovative cell-friendly and efficient polyurethane nanoparticles for targeted reprogramming of cardiac fibroblasts.
I will design an injectable bioartificial hydrogel based on a blend of a thermosensitive polyurethane and a natural component selected among a novel cell-secreted natural polymer mixture (“biomatrix”) recapitulating the complexity of cardiac extracellular matrix or one of its main protein constituents. Such multifunctional hydrogel will deliver in situ agents stimulating recruitment of cardiac fibroblasts together with the nanoparticles loaded with reprogramming therapeutics, and will provide biochemical signalling to stimulate efficient conversion of fibroblasts into mature cardiomyocytes.
First-in-field biomaterials-based innovations introduced by BIORECAR will enable more effective regeneration of functional myocardial tissue respect to state-of-the art approaches. BIORECAR innovation is multidisciplinary in nature and will be accelerated towards future clinical translation through my clinical, scientific and industrial collaborations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BOOST
Project Biomimetic trick to re-balance Osteblast-Osteoclast loop in osteoporoSis treatment: a Topological and materials driven approach
Researcher (PI) Chiara Silvia Vitale Brovarone
Host Institution (HI) POLITECNICO DI TORINO
Country Italy
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary One out of 5 people in their fifties will experience a bone fracture due to osteoporosis (OP)-induced fragility in their lifetime. The OP socio-economic burden is dramatic and involves tens of millions of people in the EU, with a steadily increasing number due to population ageing. Current treatments entail drug-therapy coupled with a healthy lifestyle but OP fractures need mechanical fixation to rapidly achieve union: the contribution of biomaterial scientists in this field is still far from taking its expected leading role in cutting-edge research. Bone remodelling is a well-coordinated process of bone resorption by osteoclasts followed by the production of new bone by osteoblasts. This process occurs continuously throughout life in a coupling with a positive balance during growth and negative with ageing, which can result in OP. We believe that an architecture driven stimulation of the osteoclast/osteoblast coupling, with an avant-garde focus on osteoclasts activity, is the key to success in treating unbalanced bone remodelling. We aim to manufacture a scaffold that mimics healthy bone features which will establish a new microenvironment favoring a properly stimulated and active population of osteoclasts and osteoblasts, i.e. a well-balanced bone cooperation. After 5 years we will be able to prove the efficacy of this approach. A benchmark will be set up for OP fracture treatment and for the realization of smart bone substitutes that will be able to locally “trick” aged bone cells stimulating them to act as healthy ones. BOOST results will have an unprecedented impact on the scientific research community, opening a new approach to set up smart, biomimetic strategies to treat aged, unbalanced bone tissues and to reduce OP-associated disabilities and financial burdens.
Summary
One out of 5 people in their fifties will experience a bone fracture due to osteoporosis (OP)-induced fragility in their lifetime. The OP socio-economic burden is dramatic and involves tens of millions of people in the EU, with a steadily increasing number due to population ageing. Current treatments entail drug-therapy coupled with a healthy lifestyle but OP fractures need mechanical fixation to rapidly achieve union: the contribution of biomaterial scientists in this field is still far from taking its expected leading role in cutting-edge research. Bone remodelling is a well-coordinated process of bone resorption by osteoclasts followed by the production of new bone by osteoblasts. This process occurs continuously throughout life in a coupling with a positive balance during growth and negative with ageing, which can result in OP. We believe that an architecture driven stimulation of the osteoclast/osteoblast coupling, with an avant-garde focus on osteoclasts activity, is the key to success in treating unbalanced bone remodelling. We aim to manufacture a scaffold that mimics healthy bone features which will establish a new microenvironment favoring a properly stimulated and active population of osteoclasts and osteoblasts, i.e. a well-balanced bone cooperation. After 5 years we will be able to prove the efficacy of this approach. A benchmark will be set up for OP fracture treatment and for the realization of smart bone substitutes that will be able to locally “trick” aged bone cells stimulating them to act as healthy ones. BOOST results will have an unprecedented impact on the scientific research community, opening a new approach to set up smart, biomimetic strategies to treat aged, unbalanced bone tissues and to reduce OP-associated disabilities and financial burdens.
Max ERC Funding
1 977 500 €
Duration
Start date: 2016-05-01, End date: 2022-06-30