Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym 4DBIOSERS
Project Four-Dimensional Monitoring of Tumour Growth by Surface Enhanced Raman Scattering
Researcher (PI) Luis LIZ-MARZAN
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Summary
Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Max ERC Funding
2 410 771 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AFRICA-GHG
Project AFRICA-GHG: The role of African tropical forests on the Greenhouse Gases balance of the atmosphere
Researcher (PI) Riccardo Valentini
Host Institution (HI) FONDAZIONE CENTRO EURO-MEDITERRANEOSUI CAMBIAMENTI CLIMATICI
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Summary
The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Max ERC Funding
2 406 950 €
Duration
Start date: 2010-04-01, End date: 2014-12-31
Project acronym AfricanWomen
Project Women in Africa
Researcher (PI) catherine GUIRKINGER
Host Institution (HI) UNIVERSITE DE NAMUR ASBL
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary Rates of domestic violence and the relative risk of premature death for women are higher in sub-Saharan Africa than in any other region. Yet we know remarkably little about the economic forces, incentives and constraints that drive discrimination against women in this region, making it hard to identify policy levers to address the problem. This project will help fill this gap.
I will investigate gender discrimination from two complementary perspectives. First, through the lens of economic history, I will investigate the forces driving trends in women’s relative well-being since slavery. To quantify the evolution of well-being of sub-Saharan women relative to men, I will use three types of historical data: anthropometric indicators (relative height), vital statistics (to compute numbers of missing women), and outcomes of formal and informal family law disputes. I will then investigate how major economic developments and changes in family laws differentially affected women’s welfare across ethnic groups with different norms on women’s roles and rights.
Second, using intra-household economic models, I will provide new insights into domestic violence and gender bias in access to crucial resources in present-day Africa. I will develop a new household model that incorporates gender identity and endogenous outside options to explore the relationship between women’s empowerment and the use of violence. Using the notion of strategic delegation, I will propose a new rationale for the separation of budgets often observed in African households and generate predictions of how improvements in women’s outside options affect welfare. Finally, with first hand data, I will investigate intra-household differences in nutrition and work effort in times of food shortage from the points of view of efficiency and equity. I will use activity trackers as an innovative means of collecting high quality data on work effort and thus overcome data limitations restricting the existing literature
Summary
Rates of domestic violence and the relative risk of premature death for women are higher in sub-Saharan Africa than in any other region. Yet we know remarkably little about the economic forces, incentives and constraints that drive discrimination against women in this region, making it hard to identify policy levers to address the problem. This project will help fill this gap.
I will investigate gender discrimination from two complementary perspectives. First, through the lens of economic history, I will investigate the forces driving trends in women’s relative well-being since slavery. To quantify the evolution of well-being of sub-Saharan women relative to men, I will use three types of historical data: anthropometric indicators (relative height), vital statistics (to compute numbers of missing women), and outcomes of formal and informal family law disputes. I will then investigate how major economic developments and changes in family laws differentially affected women’s welfare across ethnic groups with different norms on women’s roles and rights.
Second, using intra-household economic models, I will provide new insights into domestic violence and gender bias in access to crucial resources in present-day Africa. I will develop a new household model that incorporates gender identity and endogenous outside options to explore the relationship between women’s empowerment and the use of violence. Using the notion of strategic delegation, I will propose a new rationale for the separation of budgets often observed in African households and generate predictions of how improvements in women’s outside options affect welfare. Finally, with first hand data, I will investigate intra-household differences in nutrition and work effort in times of food shortage from the points of view of efficiency and equity. I will use activity trackers as an innovative means of collecting high quality data on work effort and thus overcome data limitations restricting the existing literature
Max ERC Funding
1 499 313 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym AFRIVAL
Project African river basins: catchment-scale carbon fluxes and transformations
Researcher (PI) Steven Bouillon
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Summary
This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Max ERC Funding
1 745 262 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym AGEnTh
Project Atomic Gauge and Entanglement Theories
Researcher (PI) Marcello DALMONTE
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Starting Grant (StG), PE2, ERC-2017-STG
Summary AGEnTh is an interdisciplinary proposal which aims at theoretically investigating atomic many-body systems (cold atoms and trapped ions) in close connection to concepts from quantum information, condensed matter, and high energy physics. The main goals of this programme are to:
I) Find to scalable schemes for the measurements of entanglement properties, and in particular entanglement spectra, by proposing a shifting paradigm to access entanglement focused on entanglement Hamiltonians and field theories instead of probing density matrices;
II) Show how atomic gauge theories (including dynamical gauge fields) are ideal candidates for the realization of long-sought, highly-entangled states of matter, in particular topological superconductors supporting parafermion edge modes, and novel classes of quantum spin liquids emerging from clustering;
III) Develop new implementation strategies for the realization of gauge symmetries of paramount importance, such as discrete and SU(N)xSU(2)xU(1) groups, and establish a theoretical framework for the understanding of atomic physics experiments within the light-from-chaos scenario pioneered in particle physics.
These objectives are at the cutting-edge of fundamental science, and represent a coherent effort aimed at underpinning unprecedented regimes of strongly interacting quantum matter by addressing the basic aspects of probing, many-body physics, and implementations. The results are expected to (i) build up and establish qualitatively new synergies between the aforementioned communities, and (ii) stimulate an intense theoretical and experimental activity focused on both entanglement and atomic gauge theories.
In order to achieve those, AGEnTh builds: (1) on my background working at the interface between atomic physics and quantum optics from one side, and many-body theory on the other, and (2) on exploratory studies which I carried out to mitigate the conceptual risks associated with its high-risk/high-gain goals.
Summary
AGEnTh is an interdisciplinary proposal which aims at theoretically investigating atomic many-body systems (cold atoms and trapped ions) in close connection to concepts from quantum information, condensed matter, and high energy physics. The main goals of this programme are to:
I) Find to scalable schemes for the measurements of entanglement properties, and in particular entanglement spectra, by proposing a shifting paradigm to access entanglement focused on entanglement Hamiltonians and field theories instead of probing density matrices;
II) Show how atomic gauge theories (including dynamical gauge fields) are ideal candidates for the realization of long-sought, highly-entangled states of matter, in particular topological superconductors supporting parafermion edge modes, and novel classes of quantum spin liquids emerging from clustering;
III) Develop new implementation strategies for the realization of gauge symmetries of paramount importance, such as discrete and SU(N)xSU(2)xU(1) groups, and establish a theoretical framework for the understanding of atomic physics experiments within the light-from-chaos scenario pioneered in particle physics.
These objectives are at the cutting-edge of fundamental science, and represent a coherent effort aimed at underpinning unprecedented regimes of strongly interacting quantum matter by addressing the basic aspects of probing, many-body physics, and implementations. The results are expected to (i) build up and establish qualitatively new synergies between the aforementioned communities, and (ii) stimulate an intense theoretical and experimental activity focused on both entanglement and atomic gauge theories.
In order to achieve those, AGEnTh builds: (1) on my background working at the interface between atomic physics and quantum optics from one side, and many-body theory on the other, and (2) on exploratory studies which I carried out to mitigate the conceptual risks associated with its high-risk/high-gain goals.
Max ERC Funding
1 055 317 €
Duration
Start date: 2018-05-01, End date: 2023-04-30