Project acronym AfricanNeo
Project The African Neolithic: A genetic perspective
Researcher (PI) Carina SCHLEBUSCH
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary The spread of farming practices in various parts of the world had a marked influence on how humans live today and how we are distributed around the globe. Around 10,000 years ago, warmer conditions lead to population increases, coinciding with the invention of farming in several places around the world. Archaeological evidence attest to the spread of these practices to neighboring regions. In many cases this lead to whole continents being converted from hunter-gatherer to farming societies. It is however difficult to see from archaeological records if only the farming culture spread to other places or whether the farming people themselves migrated. Investigating patterns of genetic variation for farming populations and for remaining hunter-gatherer groups can help to resolve questions on population movements co-occurring with the spread of farming practices. It can further shed light on the routes of migration and dates when migrants arrived.
The spread of farming to Europe has been thoroughly investigated in the fields of archaeology, linguistics and genetics, while on other continents these events have been less investigated. In Africa, mainly linguistic and archaeological studies have attempted to elucidate the spread of farming and herding practices. I propose to investigate the movement of farmer and pastoral groups in Africa, by typing densely spaced genome-wide variant positions in a large number of African populations. The data will be used to infer how farming and pastoralism was introduced to various regions, where the incoming people originated from and when these (potential) population movements occurred. Through this study, the Holocene history of Africa will be revealed and placed into a global context of migration, mobility and cultural transitions. Additionally the study will give due credence to one of the largest Neolithic expansion events, the Bantu-expansion, which caused a pronounced change in the demographic landscape of the African continent
Summary
The spread of farming practices in various parts of the world had a marked influence on how humans live today and how we are distributed around the globe. Around 10,000 years ago, warmer conditions lead to population increases, coinciding with the invention of farming in several places around the world. Archaeological evidence attest to the spread of these practices to neighboring regions. In many cases this lead to whole continents being converted from hunter-gatherer to farming societies. It is however difficult to see from archaeological records if only the farming culture spread to other places or whether the farming people themselves migrated. Investigating patterns of genetic variation for farming populations and for remaining hunter-gatherer groups can help to resolve questions on population movements co-occurring with the spread of farming practices. It can further shed light on the routes of migration and dates when migrants arrived.
The spread of farming to Europe has been thoroughly investigated in the fields of archaeology, linguistics and genetics, while on other continents these events have been less investigated. In Africa, mainly linguistic and archaeological studies have attempted to elucidate the spread of farming and herding practices. I propose to investigate the movement of farmer and pastoral groups in Africa, by typing densely spaced genome-wide variant positions in a large number of African populations. The data will be used to infer how farming and pastoralism was introduced to various regions, where the incoming people originated from and when these (potential) population movements occurred. Through this study, the Holocene history of Africa will be revealed and placed into a global context of migration, mobility and cultural transitions. Additionally the study will give due credence to one of the largest Neolithic expansion events, the Bantu-expansion, which caused a pronounced change in the demographic landscape of the African continent
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym AFRODITE
Project Advanced Fluid Research On Drag reduction In Turbulence Experiments
Researcher (PI) Jens Henrik Mikael Fransson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Country Sweden
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Summary
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Max ERC Funding
1 418 399 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym ANSR
Project Ab initio approach to nuclear structure and reactions (++)
Researcher (PI) Christian Erik Forssen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Summary
Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Max ERC Funding
1 304 800 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym collectiveQCD
Project Collectivity in small, srongly interacting systems
Researcher (PI) Korinna ZAPP
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary In collisions of heavy nuclei at collider energies, for instance at the Large Hadron Collider (LHC) at CERN, the energy density is so high that an equilibrated Quark-Gluon Plasma (QGP), an exotic state of matter consisting of deconfined quarks and gluons, is formed. In proton-proton (p+p) collisions, on the other hand, the density of produced particles is low. The traditional view on such reactions is that final state particles are free and do not rescatter. This picture is challenged by recent LHC data, which found features in p+p collisions that are indicative of collective behaviour and/or the formation of a hot and dense system. These findings have been taken as signs of QGP formation in p+p reactions. Such an interpretation is complicated by the fact that jets, which are the manifestation of very energetic quarks and gluons, are quenched in heavy ion collisions, but appear to be unmodified in p+p reactions. This is puzzling because collectivity and jet quenching are caused by the same processes. So far there is no consensus about the interpretation of these results, which is also due to a lack of suitable tools.
It is the objective of this proposal to address the question whether there are collective effects in p+p collisions. To this end two models capable of describing all relevant aspects of p+p and heavy ion collisions will be developed. They will be obtained by extending a successful description of p+p to heavy ion reactions and vice versa.
The answer to these questions will either clarify the long-standing problem how collectivity emerges from fundamental interactions, or it will necessitate qualitative changes to our interpretation of collective phenomena in p+p and/or heavy ion collisions.
The PI is in a unique position to accomplish this goal, as she has spent her entire career working on different aspects of p+p and heavy ion collisions. The group in Lund is the ideal host, as it is very active in developing alternative interpretations of the data.
Summary
In collisions of heavy nuclei at collider energies, for instance at the Large Hadron Collider (LHC) at CERN, the energy density is so high that an equilibrated Quark-Gluon Plasma (QGP), an exotic state of matter consisting of deconfined quarks and gluons, is formed. In proton-proton (p+p) collisions, on the other hand, the density of produced particles is low. The traditional view on such reactions is that final state particles are free and do not rescatter. This picture is challenged by recent LHC data, which found features in p+p collisions that are indicative of collective behaviour and/or the formation of a hot and dense system. These findings have been taken as signs of QGP formation in p+p reactions. Such an interpretation is complicated by the fact that jets, which are the manifestation of very energetic quarks and gluons, are quenched in heavy ion collisions, but appear to be unmodified in p+p reactions. This is puzzling because collectivity and jet quenching are caused by the same processes. So far there is no consensus about the interpretation of these results, which is also due to a lack of suitable tools.
It is the objective of this proposal to address the question whether there are collective effects in p+p collisions. To this end two models capable of describing all relevant aspects of p+p and heavy ion collisions will be developed. They will be obtained by extending a successful description of p+p to heavy ion reactions and vice versa.
The answer to these questions will either clarify the long-standing problem how collectivity emerges from fundamental interactions, or it will necessitate qualitative changes to our interpretation of collective phenomena in p+p and/or heavy ion collisions.
The PI is in a unique position to accomplish this goal, as she has spent her entire career working on different aspects of p+p and heavy ion collisions. The group in Lund is the ideal host, as it is very active in developing alternative interpretations of the data.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym COOPNET
Project Cooperative Situational Awareness for Wireless Networks
Researcher (PI) Henk Wymeersch
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Summary
Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym ELECTRONOPERA
Project Electron dynamics to the Attosecond time scale and Angstrom length scale on low dimensional structures in Operation
Researcher (PI) Anders Mikkelsen
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary We will develop and use imaging techniques for direct probing of electron dynamics in low dimensional structures with orders of
magnitude improvements in time and spatial resolution. We will perform our measurements not only on static structures, but on
complex structures under operating conditions. Finally as our equipment can also probe structural properties from microns to
single atom defects we can directly correlate our observations of electron dynamics with knowledge of geometrical structure. We
hope to directly answer central questions in nanophysics on how complex geometric structure on several length-scales induces
new and surprising electron dynamics and thus properties in nanoscale objects.
The low dimensional semiconductors and metal (nano) structures studied will be chosen to have unique novel properties that will
have potential applications in IT, life-science and renewable energy.
To radically increase our diagnostics capabilities we will combine PhotoEmission Electron Microscopy and attosecond XUV/IR
laser technology to directly image surface electron dynamics with attosecond time resolution and nanometer lateral resolution.
Exploring a completely new realm in terms of timescale with nm resolution we will start with rather simple structure such as Au
nanoparticles and arrays nanoholes in ultrathin metal films, and gradually increase complexity.
As the first group in the world we have shown that atomic resolved structural and electrical measurements by Scanning Tunneling
Microscopy is possible on complex 1D semiconductors heterostructures. Importantly, our new method allows for direct studies of
nanowires in devices.
We can now measure atomic scale surface chemistry and surface electronic/geometric structure directly on operational/operating
nanoscale devices. This is important both from a technology point of view, and is an excellent playground for understanding the
fundamental interplay between electronic and structural properties.
Summary
We will develop and use imaging techniques for direct probing of electron dynamics in low dimensional structures with orders of
magnitude improvements in time and spatial resolution. We will perform our measurements not only on static structures, but on
complex structures under operating conditions. Finally as our equipment can also probe structural properties from microns to
single atom defects we can directly correlate our observations of electron dynamics with knowledge of geometrical structure. We
hope to directly answer central questions in nanophysics on how complex geometric structure on several length-scales induces
new and surprising electron dynamics and thus properties in nanoscale objects.
The low dimensional semiconductors and metal (nano) structures studied will be chosen to have unique novel properties that will
have potential applications in IT, life-science and renewable energy.
To radically increase our diagnostics capabilities we will combine PhotoEmission Electron Microscopy and attosecond XUV/IR
laser technology to directly image surface electron dynamics with attosecond time resolution and nanometer lateral resolution.
Exploring a completely new realm in terms of timescale with nm resolution we will start with rather simple structure such as Au
nanoparticles and arrays nanoholes in ultrathin metal films, and gradually increase complexity.
As the first group in the world we have shown that atomic resolved structural and electrical measurements by Scanning Tunneling
Microscopy is possible on complex 1D semiconductors heterostructures. Importantly, our new method allows for direct studies of
nanowires in devices.
We can now measure atomic scale surface chemistry and surface electronic/geometric structure directly on operational/operating
nanoscale devices. This is important both from a technology point of view, and is an excellent playground for understanding the
fundamental interplay between electronic and structural properties.
Max ERC Funding
1 419 120 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym GAMETE RECOGNITION
Project Molecular Basis of Mammalian Egg-Sperm Interaction
Researcher (PI) Luca Vincenzo Luigi Jovine
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary At the dawn of the 21st century, our knowledge of the molecular mechanism of mammalian
fertilization remains very limited. Different lines of evidence indicate that initial gamete recognition
depends on interaction between a few distinct proteins on sperm and ZP3, a major component of the
extracellular coat of oocytes, the zona pellucida (ZP). On the other hand, recent findings suggest an
alternative mechanism in which cleavage of another ZP subunit, ZP2, regulates binding of gametes
by altering the global structure of the ZP. Progress in the field has been hindered by the paucity and
heterogeneity of native egg-sperm recognition proteins, so that novel approaches are needed to
reconcile all available data into a single consistent model of fertilization. Following our recent
determination of the structure of the most conserved domain of sperm receptor ZP3 by X-ray
crystallography, we will conclusively establish the basis of mammalian gamete recognition by
performing structural studies of homogeneous, biologically active recombinant proteins. First, we
will combine crystallographic studies of isolated ZP subunits with electron microscopy analysis of
their filaments to build a structural model of the ZP. Second, structures of key egg-sperm
recognition protein complexes will be determined. Third, we will investigate how proteolysis of
ZP2 triggers overall conformational changes of the ZP upon gamete fusion. Together with
functional analysis of mutant proteins, these studies will provide atomic resolution snapshots of the
most crucial step in the beginning of a new life, directly visualizing molecular determinants
responsible for species-restricted gamete interaction at fertilization. The progressive decrease of
births in the Western world and inadequacy of current contraceptive methods in developing
countries underscore an urgent need for a modern approach to reproductive welfare. This research
will not only shed light on a truly fundamental biological problem, but also constitute a solid
foundation for the reproductive medicine of the future.
Summary
At the dawn of the 21st century, our knowledge of the molecular mechanism of mammalian
fertilization remains very limited. Different lines of evidence indicate that initial gamete recognition
depends on interaction between a few distinct proteins on sperm and ZP3, a major component of the
extracellular coat of oocytes, the zona pellucida (ZP). On the other hand, recent findings suggest an
alternative mechanism in which cleavage of another ZP subunit, ZP2, regulates binding of gametes
by altering the global structure of the ZP. Progress in the field has been hindered by the paucity and
heterogeneity of native egg-sperm recognition proteins, so that novel approaches are needed to
reconcile all available data into a single consistent model of fertilization. Following our recent
determination of the structure of the most conserved domain of sperm receptor ZP3 by X-ray
crystallography, we will conclusively establish the basis of mammalian gamete recognition by
performing structural studies of homogeneous, biologically active recombinant proteins. First, we
will combine crystallographic studies of isolated ZP subunits with electron microscopy analysis of
their filaments to build a structural model of the ZP. Second, structures of key egg-sperm
recognition protein complexes will be determined. Third, we will investigate how proteolysis of
ZP2 triggers overall conformational changes of the ZP upon gamete fusion. Together with
functional analysis of mutant proteins, these studies will provide atomic resolution snapshots of the
most crucial step in the beginning of a new life, directly visualizing molecular determinants
responsible for species-restricted gamete interaction at fertilization. The progressive decrease of
births in the Western world and inadequacy of current contraceptive methods in developing
countries underscore an urgent need for a modern approach to reproductive welfare. This research
will not only shed light on a truly fundamental biological problem, but also constitute a solid
foundation for the reproductive medicine of the future.
Max ERC Funding
1 499 282 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym HALOGEN
Project Understanding Halogen Bonding in Solution: Investigation of Yet Unexplored Interactions with Applications in Medicinal Chemistry
Researcher (PI) Mate Erdelyi
Host Institution (HI) GOETEBORGS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Halogen bonding is an electron density donation-based weak interaction that has so far almost exclusively been investigated in computational and crystallographic studies. It shows high similarities to hydrogen bonding; however, its applicability for molecular recognition processes long remained unappreciated and has not been thoroughly explored.
The main goals of this project are (1) to take the major leap from solid state/computational to /solution/ investigations of halogen bonding by developing novel NMR methods, using these (2) perform the first ever systematic physicochemical study of halogen bonding in solutions, and (3) to apply the gained knowledge in structural biology through elucidation of the anaesthetic binding site of native proteins. This in turn is of direct clinical relevance by providing a long-sought understanding of the disease malignant hyperthermia.
Model compounds will be prepared using solution-phase and solid-supported organic synthesis; NMR methods will be developed for physicochemical studies of molecular recognition processes and applied in structural biology through the study of the interaction of anaesthetics with proteins involved in cellular calcium regulation.
Using a peptidomimetic model system and an outstandingly sensitive NMR technique I will systematically study the impact of halogen bond donor and acceptor sites, and of electronic and solvent effects on the strength of the interaction. The proposed method will quantify relative stability of a strategically-designed, cooperatively folding model system.
A second NMR technique will utilize paramagnetic effects and permit simultaneous characterization of bond strength and geometry of weak intermolecular complexes in solution. The technique will first be validated on small, organic model compounds and subsequently be transferred to weak, protein-ligand interactions. It will be exploited to gain an atomic level understanding of anaesthesia.
Summary
Halogen bonding is an electron density donation-based weak interaction that has so far almost exclusively been investigated in computational and crystallographic studies. It shows high similarities to hydrogen bonding; however, its applicability for molecular recognition processes long remained unappreciated and has not been thoroughly explored.
The main goals of this project are (1) to take the major leap from solid state/computational to /solution/ investigations of halogen bonding by developing novel NMR methods, using these (2) perform the first ever systematic physicochemical study of halogen bonding in solutions, and (3) to apply the gained knowledge in structural biology through elucidation of the anaesthetic binding site of native proteins. This in turn is of direct clinical relevance by providing a long-sought understanding of the disease malignant hyperthermia.
Model compounds will be prepared using solution-phase and solid-supported organic synthesis; NMR methods will be developed for physicochemical studies of molecular recognition processes and applied in structural biology through the study of the interaction of anaesthetics with proteins involved in cellular calcium regulation.
Using a peptidomimetic model system and an outstandingly sensitive NMR technique I will systematically study the impact of halogen bond donor and acceptor sites, and of electronic and solvent effects on the strength of the interaction. The proposed method will quantify relative stability of a strategically-designed, cooperatively folding model system.
A second NMR technique will utilize paramagnetic effects and permit simultaneous characterization of bond strength and geometry of weak intermolecular complexes in solution. The technique will first be validated on small, organic model compounds and subsequently be transferred to weak, protein-ligand interactions. It will be exploited to gain an atomic level understanding of anaesthesia.
Max ERC Funding
1 495 630 €
Duration
Start date: 2010-09-01, End date: 2015-08-31
Project acronym HEALFAM
Project The effects of unemployment on health of family members
Researcher (PI) Anna BARANOWSKA-RATAJ
Host Institution (HI) UMEA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), SH3, ERC-2018-STG
Summary Previous research has investigated the relationship between unemployment and health from a perspective of an isolated individual. HEALFAM takes a novel approach and examines how transition to unemployment triggers diffusion of ill mental and physical health within families. It investigates how becoming unemployed affects health outcomes of partners, children and elderly parents of the unemployed and whether the magnitudes of these influences differ across families and societies. Thus, instead of viewing the unemployed as functioning in isolation, HEALFAM assesses the consequences of unemployment for family members taking a multi-actor perspective and international comparative approach.
Guided by the life course theoretical framework, which views health and well-being as a process rather than a state and calls for considering interrelatedness of individuals, HEALFAM employs longitudinal data that provide information about multiple members of families. In order to analyse these datasets, HEALFAM uses longitudinal dyadic data analysis techniques as well as multilevel models for longitudinal data.
HEALFAM aims to open a new frontline of research on health and wellbeing from a life course perspective. It benefits from my knowledge on three interrelated social phenomena: (1) the role of labour market career and experiences of unemployment (2) family structure and intra-family resources (3) social antecedents of health and wellbeing among family members. It draws on high quality register and panel survey data as well as the expertise at the interdisciplinary research centres that I am connected to at Umeå University. Through international collaborations, it brings together experts in multiple disciplines carrying out research taking a life course perspective.
Summary
Previous research has investigated the relationship between unemployment and health from a perspective of an isolated individual. HEALFAM takes a novel approach and examines how transition to unemployment triggers diffusion of ill mental and physical health within families. It investigates how becoming unemployed affects health outcomes of partners, children and elderly parents of the unemployed and whether the magnitudes of these influences differ across families and societies. Thus, instead of viewing the unemployed as functioning in isolation, HEALFAM assesses the consequences of unemployment for family members taking a multi-actor perspective and international comparative approach.
Guided by the life course theoretical framework, which views health and well-being as a process rather than a state and calls for considering interrelatedness of individuals, HEALFAM employs longitudinal data that provide information about multiple members of families. In order to analyse these datasets, HEALFAM uses longitudinal dyadic data analysis techniques as well as multilevel models for longitudinal data.
HEALFAM aims to open a new frontline of research on health and wellbeing from a life course perspective. It benefits from my knowledge on three interrelated social phenomena: (1) the role of labour market career and experiences of unemployment (2) family structure and intra-family resources (3) social antecedents of health and wellbeing among family members. It draws on high quality register and panel survey data as well as the expertise at the interdisciplinary research centres that I am connected to at Umeå University. Through international collaborations, it brings together experts in multiple disciplines carrying out research taking a life course perspective.
Max ERC Funding
1 477 556 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym INTGEN
Project Intergenerational correlations of schooling, income and health: an investigation of the underlying mechanisms
Researcher (PI) Carl Mikael Lindahl
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), SH1, ERC-2009-StG
Summary The objective of this project is to use rich Swedish registry data to learn about mechanisms behind intergenerational correlations. Typically, considerably effort has been spent on estimating correlations between outcome variables, such as education and income, for parents and children. However, the estimated correlations are driven by the causal effect of the parental variable of interest as well as unobservable factors such as other family background related variables and a part that is due to genetic transmission between parent and child. Disentangling these parts is very difficult and only recently has researchers made serious attempts to disentangling these different parts. However, findings vary widely across methods and this literature is still in its infancy. Among questions we ask are: How much of the association between outcome variables for the child and a parent is due to a causal effect from the parental variable, and how much is transmitted through unobservable family factors and genetic transmission? What are the intergenerational transmission and channels for life expectancy and health? What is the importance of genes-environmental interaction? Has the importance of genes, environment and its interactions for the intergenerational associations changed during the growth of the Scandinavian welfare state? How many generations does it take for ancestors placement in the income distribution to not longer matter for life success? These questions are directly relevant for policy, and relate to classical social science issues such as inequality of opportunity and level-of-living in general. The innovativeness of this project is based on using the uniqueness of Swedish registry data (ideal to answer these questions), with which one can match biological and adoptive parents, children and siblings, and hence can identify whether children are reared by their biological or adoptive parents, for the population of Swedes.
Summary
The objective of this project is to use rich Swedish registry data to learn about mechanisms behind intergenerational correlations. Typically, considerably effort has been spent on estimating correlations between outcome variables, such as education and income, for parents and children. However, the estimated correlations are driven by the causal effect of the parental variable of interest as well as unobservable factors such as other family background related variables and a part that is due to genetic transmission between parent and child. Disentangling these parts is very difficult and only recently has researchers made serious attempts to disentangling these different parts. However, findings vary widely across methods and this literature is still in its infancy. Among questions we ask are: How much of the association between outcome variables for the child and a parent is due to a causal effect from the parental variable, and how much is transmitted through unobservable family factors and genetic transmission? What are the intergenerational transmission and channels for life expectancy and health? What is the importance of genes-environmental interaction? Has the importance of genes, environment and its interactions for the intergenerational associations changed during the growth of the Scandinavian welfare state? How many generations does it take for ancestors placement in the income distribution to not longer matter for life success? These questions are directly relevant for policy, and relate to classical social science issues such as inequality of opportunity and level-of-living in general. The innovativeness of this project is based on using the uniqueness of Swedish registry data (ideal to answer these questions), with which one can match biological and adoptive parents, children and siblings, and hence can identify whether children are reared by their biological or adoptive parents, for the population of Swedes.
Max ERC Funding
631 600 €
Duration
Start date: 2010-09-01, End date: 2015-08-31