Project acronym ANSR
Project Ab initio approach to nuclear structure and reactions (++)
Researcher (PI) Christian Erik Forssen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Summary
Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Max ERC Funding
1 304 800 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ASD
Project Atomistic Spin-Dynamics; Methodology and Applications
Researcher (PI) Olof Ragnar Eriksson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Our aim is to provide a theoretical framework for studies of dynamical aspects of magnetic materials and magnetisation reversal, which has potential for applications for magnetic data storage and magnetic memory devices. The project focuses on developing and using an atomistic spin dynamics simulation method. Our goal is to identify novel materials and device geometries with improved performance. The scientific questions which will be addressed concern the understanding of the fundamental temporal limit of magnetisation switching and reversal, and the mechanisms which govern this limit. The methodological developments concern the ability to, from first principles theory, calculate the interatomic exchange parameters of materials in general, in particular for correlated electron materials, via the use of dynamical mean-field theory. The theoretical development also involves an atomistic spin dynamics simulation method, which once it has been established, will be released as a public software package. The proposed theoretical research will be intimately connected to world-leading experimental efforts, especially in Europe where a leading activity in experimental studies of magnetisation dynamics has been established. The ambition with this project is to become world-leading in the theory of simulating spin-dynamics phenomena, and to promote education and training of young researchers. To achieve our goals we will build up an open and lively environment, where the advances in the theoretical knowledge of spin-dynamics phenomena will be used to address important questions in information technology. In this environment the next generation research leaders will be fostered and trained, thus ensuring that the society of tomorrow is equipped with the scientific competence to tackle the challenges of our future.
Summary
Our aim is to provide a theoretical framework for studies of dynamical aspects of magnetic materials and magnetisation reversal, which has potential for applications for magnetic data storage and magnetic memory devices. The project focuses on developing and using an atomistic spin dynamics simulation method. Our goal is to identify novel materials and device geometries with improved performance. The scientific questions which will be addressed concern the understanding of the fundamental temporal limit of magnetisation switching and reversal, and the mechanisms which govern this limit. The methodological developments concern the ability to, from first principles theory, calculate the interatomic exchange parameters of materials in general, in particular for correlated electron materials, via the use of dynamical mean-field theory. The theoretical development also involves an atomistic spin dynamics simulation method, which once it has been established, will be released as a public software package. The proposed theoretical research will be intimately connected to world-leading experimental efforts, especially in Europe where a leading activity in experimental studies of magnetisation dynamics has been established. The ambition with this project is to become world-leading in the theory of simulating spin-dynamics phenomena, and to promote education and training of young researchers. To achieve our goals we will build up an open and lively environment, where the advances in the theoretical knowledge of spin-dynamics phenomena will be used to address important questions in information technology. In this environment the next generation research leaders will be fostered and trained, thus ensuring that the society of tomorrow is equipped with the scientific competence to tackle the challenges of our future.
Max ERC Funding
2 130 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym BRAINCELL
Project Charting the landscape of brain development by large-scale single-cell transcriptomics and phylogenetic lineage reconstruction
Researcher (PI) Sten Linnarsson
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.
Summary
Embryogenesis is the temporal unfolding of cellular processes: proliferation, migration, differentiation, morphogenesis, apoptosis and functional specialization. These processes are well understood in specific tissues, and for specific cell types. Nevertheless, our systematic knowledge of the types of cells present in the developing and adult animal, and about their functional and lineage relationships, is limited. For example, there is no consensus on the number of cell types, and many important stem cells and progenitors remain to be discovered. Similarly, the lineage relationships between specific cell types are often poorly characterized. This is particularly true for the mammalian nervous system. We have developed (1) a reliable high-throghput method for sequencing all transcripts in 96 single cells at a time; and (2) a system for high-throughput phylogenetic lineage reconstruction. We now propose to characterize embryogenesis using a shotgun approach borrowed from genomics. Tissues will be dissected from multiple stages and dissociated to single cells. A total of 10,000 cells will be analyzed by RNA sequencing, revealing their functional cell type, their lineage relationships, and their current state (e.g. cell cycle phase). The novel approach proposed here will bring the powerful strategies pioneered in genomics into the field of developmental biology, including automation, digitization, and the random shotgun method. The data thus obtained will bring clarity to the concept of ‘cell type’; will provide a first catalog of mouse brain cell types with deep functional annotation; will provide markers for every cell type, including stem cells; and will serve as a basis for future comparative work, especially with human embryos.
Max ERC Funding
1 496 032 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym CAPTURE
Project CApturing Paradata for documenTing data creation and Use for the REsearch of the future
Researcher (PI) Isto HUVILA
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary "Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Summary
"Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Max ERC Funding
1 944 162 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym CEV
Project Coordination by Evaluations and Valuations:
Market Logic Inside and Outside the Economy
Researcher (PI) Jonas Patrik Aspers
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary This project studies evaluation and valuation as ways of coordinating actors and resources. Valuation is the ascribing of value to people, organizations, things and events given that there is no standard of value. Evaluation is judging according to an already existing value-standard. Valuation and evaluation are ways of ranking and thus ordering of objects . Markets are examples of economic social formations in which valuations and evaluations are the foundation for the choices made. Valuation and evaluation are important means of coordination also outside of the economy, in competitions (e.g., sports), reviews (e.g., books), and auditing (e.g., of ethical conduct).
This project is motivated by evaluation and valuation as increasingly influential ways of coordinating social life. Choices based on evaluation have gradually replaced networks and hierarchies as the preferred coordination form, but processes of valuation or evaluation are not well-understood. The overarching research question of this project is: how do processes of coordination based on valuations function? By understanding these processes can we analyze the consequences of coordinated by the means of evaluation in different spheres of life. It is also the foundation for policy suggestions.
The proposed project uses theoretical insights about market elements in economics and sociology and on the relational sociological literature on social formations. Empirical sub-projects are designed to facilitate comparison, to establish validated conclusions and to promote theory development. This project opens up a new avenue of research of coordination based on valuation and evaluation. It will lead to the establishment a high quality research group located at the frontiers of social science.
Summary
This project studies evaluation and valuation as ways of coordinating actors and resources. Valuation is the ascribing of value to people, organizations, things and events given that there is no standard of value. Evaluation is judging according to an already existing value-standard. Valuation and evaluation are ways of ranking and thus ordering of objects . Markets are examples of economic social formations in which valuations and evaluations are the foundation for the choices made. Valuation and evaluation are important means of coordination also outside of the economy, in competitions (e.g., sports), reviews (e.g., books), and auditing (e.g., of ethical conduct).
This project is motivated by evaluation and valuation as increasingly influential ways of coordinating social life. Choices based on evaluation have gradually replaced networks and hierarchies as the preferred coordination form, but processes of valuation or evaluation are not well-understood. The overarching research question of this project is: how do processes of coordination based on valuations function? By understanding these processes can we analyze the consequences of coordinated by the means of evaluation in different spheres of life. It is also the foundation for policy suggestions.
The proposed project uses theoretical insights about market elements in economics and sociology and on the relational sociological literature on social formations. Empirical sub-projects are designed to facilitate comparison, to establish validated conclusions and to promote theory development. This project opens up a new avenue of research of coordination based on valuation and evaluation. It will lead to the establishment a high quality research group located at the frontiers of social science.
Max ERC Funding
1 476 251 €
Duration
Start date: 2011-03-01, End date: 2016-02-29
Project acronym collectiveQCD
Project Collectivity in small, srongly interacting systems
Researcher (PI) Korinna ZAPP
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary In collisions of heavy nuclei at collider energies, for instance at the Large Hadron Collider (LHC) at CERN, the energy density is so high that an equilibrated Quark-Gluon Plasma (QGP), an exotic state of matter consisting of deconfined quarks and gluons, is formed. In proton-proton (p+p) collisions, on the other hand, the density of produced particles is low. The traditional view on such reactions is that final state particles are free and do not rescatter. This picture is challenged by recent LHC data, which found features in p+p collisions that are indicative of collective behaviour and/or the formation of a hot and dense system. These findings have been taken as signs of QGP formation in p+p reactions. Such an interpretation is complicated by the fact that jets, which are the manifestation of very energetic quarks and gluons, are quenched in heavy ion collisions, but appear to be unmodified in p+p reactions. This is puzzling because collectivity and jet quenching are caused by the same processes. So far there is no consensus about the interpretation of these results, which is also due to a lack of suitable tools.
It is the objective of this proposal to address the question whether there are collective effects in p+p collisions. To this end two models capable of describing all relevant aspects of p+p and heavy ion collisions will be developed. They will be obtained by extending a successful description of p+p to heavy ion reactions and vice versa.
The answer to these questions will either clarify the long-standing problem how collectivity emerges from fundamental interactions, or it will necessitate qualitative changes to our interpretation of collective phenomena in p+p and/or heavy ion collisions.
The PI is in a unique position to accomplish this goal, as she has spent her entire career working on different aspects of p+p and heavy ion collisions. The group in Lund is the ideal host, as it is very active in developing alternative interpretations of the data.
Summary
In collisions of heavy nuclei at collider energies, for instance at the Large Hadron Collider (LHC) at CERN, the energy density is so high that an equilibrated Quark-Gluon Plasma (QGP), an exotic state of matter consisting of deconfined quarks and gluons, is formed. In proton-proton (p+p) collisions, on the other hand, the density of produced particles is low. The traditional view on such reactions is that final state particles are free and do not rescatter. This picture is challenged by recent LHC data, which found features in p+p collisions that are indicative of collective behaviour and/or the formation of a hot and dense system. These findings have been taken as signs of QGP formation in p+p reactions. Such an interpretation is complicated by the fact that jets, which are the manifestation of very energetic quarks and gluons, are quenched in heavy ion collisions, but appear to be unmodified in p+p reactions. This is puzzling because collectivity and jet quenching are caused by the same processes. So far there is no consensus about the interpretation of these results, which is also due to a lack of suitable tools.
It is the objective of this proposal to address the question whether there are collective effects in p+p collisions. To this end two models capable of describing all relevant aspects of p+p and heavy ion collisions will be developed. They will be obtained by extending a successful description of p+p to heavy ion reactions and vice versa.
The answer to these questions will either clarify the long-standing problem how collectivity emerges from fundamental interactions, or it will necessitate qualitative changes to our interpretation of collective phenomena in p+p and/or heavy ion collisions.
The PI is in a unique position to accomplish this goal, as she has spent her entire career working on different aspects of p+p and heavy ion collisions. The group in Lund is the ideal host, as it is very active in developing alternative interpretations of the data.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym COOPNET
Project Cooperative Situational Awareness for Wireless Networks
Researcher (PI) Henk Wymeersch
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Summary
Devices in wireless networks are no longer used only for communicating binary information, but also for navigation and to sense their surroundings. We are currently approaching fundamental limitations in terms of communication throughput, position information availability and accuracy, and decision making based on sensory data. The goal of this proposal is to understand how the cooperative nature of future wireless networks can be leveraged to perform timekeeping, positioning, communication, and decision making, so as to obtain orders of magnitude performance improvements compared to current architectures.
Our research will have implications in many fields and will comprise fundamental theoretical contributions as well as a cooperative wireless testbed. The fundamental contributions will lead to a deep understanding of cooperative wireless networks and will enable new pervasive applications which currently cannot be supported. The testbed will be used to validate the research, and will serve as a kernel for other researchers worldwide to advance knowledge on cooperative networks. Our work will build on and consolidate knowledge currently dispersed in different scientific disciplines and communities (such as communication theory, sensor networks, distributed estimation and detection, environmental monitoring, control theory, positioning and timekeeping, distributed optimization). It will give a new thrust to research within those communities and forge relations between them.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym DarkComb
Project Dark-Soliton Engineering in Microresonator Frequency Combs
Researcher (PI) Victor TORRES COMPANY
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The continuing increase in Internet data traffic is pushing the capacity of single-mode fiber to its fundamental limits. Space division multiplexing (SDM) offers the only remaining physical degree of freedom – the space dimension in the transmission channel – to substantially increase the capacity in lightwave communication systems.
The microresonator comb is an emerging technology platform that enables the generation of an optical frequency comb in a micrometer-scale cavity. Its compact size and compatibility with established semiconductor fabrication techniques promises to revolutionize the fields of frequency synthesis and metrology, and create new mass-market applications.
I envision significant scaling advantages in future fiber-optic communications by merging SDM with microresonator frequency combs. One major obstacle to overcome here is the poor conversion efficiency that can be fundamentally obtained using the most stable and broadest combs generated in microresonators today. I propose to look into the generation of dark, as opposed to bright, temporal solitons in linearly coupled microresonators. The goal is to achieve reliable microresonator combs with exceptionally high power conversion efficiency, resulting in optimal characteristics for SDM applications. The scientific and technological possibilities of this achievement promise significant impact beyond the realm of fiber-optic communications.
My broad international experience, unique background in fiber communications, photonic waveguides and ultrafast photonics, the preliminary results of my group and the available infrastructure at my university place me in an outstanding position to pioneer this new direction of research.
Summary
The continuing increase in Internet data traffic is pushing the capacity of single-mode fiber to its fundamental limits. Space division multiplexing (SDM) offers the only remaining physical degree of freedom – the space dimension in the transmission channel – to substantially increase the capacity in lightwave communication systems.
The microresonator comb is an emerging technology platform that enables the generation of an optical frequency comb in a micrometer-scale cavity. Its compact size and compatibility with established semiconductor fabrication techniques promises to revolutionize the fields of frequency synthesis and metrology, and create new mass-market applications.
I envision significant scaling advantages in future fiber-optic communications by merging SDM with microresonator frequency combs. One major obstacle to overcome here is the poor conversion efficiency that can be fundamentally obtained using the most stable and broadest combs generated in microresonators today. I propose to look into the generation of dark, as opposed to bright, temporal solitons in linearly coupled microresonators. The goal is to achieve reliable microresonator combs with exceptionally high power conversion efficiency, resulting in optimal characteristics for SDM applications. The scientific and technological possibilities of this achievement promise significant impact beyond the realm of fiber-optic communications.
My broad international experience, unique background in fiber communications, photonic waveguides and ultrafast photonics, the preliminary results of my group and the available infrastructure at my university place me in an outstanding position to pioneer this new direction of research.
Max ERC Funding
2 259 523 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym DEVOCEAN
Project Impact of diatom evolution on the oceans
Researcher (PI) Daniel CONLEY
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE10, ERC-2018-ADG
Summary Motivated by a series of recent discoveries, DEVOCEAN will provide the first comprehensive evaluation of the emergence of diatoms and their impact on the global biogeochemical cycle of silica, carbon and other nutrients that regulate ocean productivity and ultimately climate. I propose that the proliferation of phytoplankton that occurred after the Permian-Triassic extinction, in particular the diatoms, fundamentally influenced oceanic environments through the enhancement of carbon export to depth as part of the biological pump. Although molecular clocks suggest that diatoms evolved over 200 Ma ago, this result has been largely ignored because of the lack of diatoms in the geologic fossil record with most studies therefore focused on diversification during the Cenozoic where abundant diatom fossils are found. Much of the older fossil evidence has likely been destroyed by dissolution during diagenesis, subducted or is concealed deep within the Earth under many layers of rock. DEVOCEAN will provide evidence on diatom evolution and speciation in the geological record by examining formations representing locations in which diatoms are likely to have accumulated in ocean sediments. We will generate robust estimates of the timing and magnitude of dissolved Si drawdown following the origin of diatoms using the isotopic silicon composition of fossil sponge spicules and radiolarians. The project will also provide fundamental new insights into the timing of dissolved Si drawdown and other key events, which reorganized the distribution of carbon and nutrients in seawater, changing energy flows and productivity in the biological communities of the ancient oceans.
Summary
Motivated by a series of recent discoveries, DEVOCEAN will provide the first comprehensive evaluation of the emergence of diatoms and their impact on the global biogeochemical cycle of silica, carbon and other nutrients that regulate ocean productivity and ultimately climate. I propose that the proliferation of phytoplankton that occurred after the Permian-Triassic extinction, in particular the diatoms, fundamentally influenced oceanic environments through the enhancement of carbon export to depth as part of the biological pump. Although molecular clocks suggest that diatoms evolved over 200 Ma ago, this result has been largely ignored because of the lack of diatoms in the geologic fossil record with most studies therefore focused on diversification during the Cenozoic where abundant diatom fossils are found. Much of the older fossil evidence has likely been destroyed by dissolution during diagenesis, subducted or is concealed deep within the Earth under many layers of rock. DEVOCEAN will provide evidence on diatom evolution and speciation in the geological record by examining formations representing locations in which diatoms are likely to have accumulated in ocean sediments. We will generate robust estimates of the timing and magnitude of dissolved Si drawdown following the origin of diatoms using the isotopic silicon composition of fossil sponge spicules and radiolarians. The project will also provide fundamental new insights into the timing of dissolved Si drawdown and other key events, which reorganized the distribution of carbon and nutrients in seawater, changing energy flows and productivity in the biological communities of the ancient oceans.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym e-NeuroPharma
Project Electronic Neuropharmacology
Researcher (PI) Rolf Magnus BERGGREN
Host Institution (HI) LINKOPINGS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE5, ERC-2018-ADG
Summary As the population ages, neurodegenerative diseases (ND) will have a devastating impact on individuals and society. Despite enormous research efforts there is still no cure for these diseases, only care! The origin of ND is hugely complex, spanning from the molecular level to systemic processes, causing malfunctioning of signalling in the central nervous system (CNS). This signalling includes the coupled processing of biochemical and electrical signals, however current approaches for symptomatic- and disease modifying treatments are all based on biochemical approaches, alone.
Organic bioelectronics has arisen as a promising technology providing signal translation, as sensors and modulators, across the biology-technology interface; especially, it has proven unique in neuronal applications. There is great opportunity with organic bioelectronics since it can complement biochemical pharmacology to enable a twinned electric-biochemical therapy for ND and neurological disorders. However, this technology is traditionally manufactured on stand-alone substrates. Even though organic bioelectronics has been manufactured on flexible and soft carriers in the past, current technology consume space and volume, that when applied to CNS, rule out close proximity and amalgamation between the bioelectronics technology and CNS components – features that are needed in order to reach high therapeutic efficacy.
e-NeuroPharma includes development of innovative organic bioelectronics, that can be in-vivo-manufactured within the brain. The overall aim is to evaluate and develop electrodes, delivery devices and sensors that enable a twinned biochemical-electric therapy approach to combat ND and other neurological disorders. e-NeuroPharma will focus on the development of materials that can cross the blood-brain-barrier, that self-organize and -polymerize along CNS components, and that record and regulate relevant electrical, electrochemical and physical parameters relevant to ND and disorders
Summary
As the population ages, neurodegenerative diseases (ND) will have a devastating impact on individuals and society. Despite enormous research efforts there is still no cure for these diseases, only care! The origin of ND is hugely complex, spanning from the molecular level to systemic processes, causing malfunctioning of signalling in the central nervous system (CNS). This signalling includes the coupled processing of biochemical and electrical signals, however current approaches for symptomatic- and disease modifying treatments are all based on biochemical approaches, alone.
Organic bioelectronics has arisen as a promising technology providing signal translation, as sensors and modulators, across the biology-technology interface; especially, it has proven unique in neuronal applications. There is great opportunity with organic bioelectronics since it can complement biochemical pharmacology to enable a twinned electric-biochemical therapy for ND and neurological disorders. However, this technology is traditionally manufactured on stand-alone substrates. Even though organic bioelectronics has been manufactured on flexible and soft carriers in the past, current technology consume space and volume, that when applied to CNS, rule out close proximity and amalgamation between the bioelectronics technology and CNS components – features that are needed in order to reach high therapeutic efficacy.
e-NeuroPharma includes development of innovative organic bioelectronics, that can be in-vivo-manufactured within the brain. The overall aim is to evaluate and develop electrodes, delivery devices and sensors that enable a twinned biochemical-electric therapy approach to combat ND and other neurological disorders. e-NeuroPharma will focus on the development of materials that can cross the blood-brain-barrier, that self-organize and -polymerize along CNS components, and that record and regulate relevant electrical, electrochemical and physical parameters relevant to ND and disorders
Max ERC Funding
3 237 335 €
Duration
Start date: 2019-09-01, End date: 2024-08-31