Project acronym 3DPROTEINPUZZLES
Project Shape-directed protein assembly design
Researcher (PI) Lars Ingemar ANDRe
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Consolidator Grant (CoG), LS9, ERC-2017-COG
Summary Large protein complexes carry out some of the most complex functions in biology. Such structures are often assembled spontaneously from individual components through the process of self-assembly. If self-assembled protein complexes could be engineered from first principle it would enable a wide range of applications in biomedicine, nanotechnology and materials science. Recently, approaches to rationally design proteins to self-assembly into predefined structures have emerged. The highlight of this work is the design of protein cages that may be engineered into protein containers. However, current approaches for self-assembly design does not result in the assemblies with the required structural complexity to encode many of the sophisticated functions found in nature. To move forward, we have to learn how to engineer protein subunits with more than one designed interface that can assemble into tightly interacting complexes. In this proposal we propose a new protein design paradigm, shape directed protein design, in order to address shortcomings of the current methodology. The proposed method combines geometric shape matching and computational protein design. Using this approach we will de novo design assemblies with a wide variety of structural states, including protein complexes with cyclic and dihedral symmetry as well as icosahedral protein capsids built from novel protein building blocks. To enable these two design challenges we also develop a high-throughput assay to measure assembly stability in vivo that builds on a three-color fluorescent assay. This method will not only facilitate the screening of orders of magnitude more design constructs, but also enable the application of directed evolution to experimentally improve stable and assembly properties of designed containers as well as other designed assemblies.
Summary
Large protein complexes carry out some of the most complex functions in biology. Such structures are often assembled spontaneously from individual components through the process of self-assembly. If self-assembled protein complexes could be engineered from first principle it would enable a wide range of applications in biomedicine, nanotechnology and materials science. Recently, approaches to rationally design proteins to self-assembly into predefined structures have emerged. The highlight of this work is the design of protein cages that may be engineered into protein containers. However, current approaches for self-assembly design does not result in the assemblies with the required structural complexity to encode many of the sophisticated functions found in nature. To move forward, we have to learn how to engineer protein subunits with more than one designed interface that can assemble into tightly interacting complexes. In this proposal we propose a new protein design paradigm, shape directed protein design, in order to address shortcomings of the current methodology. The proposed method combines geometric shape matching and computational protein design. Using this approach we will de novo design assemblies with a wide variety of structural states, including protein complexes with cyclic and dihedral symmetry as well as icosahedral protein capsids built from novel protein building blocks. To enable these two design challenges we also develop a high-throughput assay to measure assembly stability in vivo that builds on a three-color fluorescent assay. This method will not only facilitate the screening of orders of magnitude more design constructs, but also enable the application of directed evolution to experimentally improve stable and assembly properties of designed containers as well as other designed assemblies.
Max ERC Funding
2 325 292 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym ARTSILK
Project Novel approaches to the generation of artificial spider silk superfibers
Researcher (PI) Anna RISING
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.
The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.
To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g., Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.
Summary
Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.
The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.
To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g., Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BloodVariome
Project Genetic variation exposes regulators of blood cell formation in vivo in humans
Researcher (PI) Bjoern Erik Ake NILSSON
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS7, ERC-2017-COG
Summary The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Summary
The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CAPTURE
Project CApturing Paradata for documenTing data creation and Use for the REsearch of the future
Researcher (PI) Isto HUVILA
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary "Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Summary
"Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Max ERC Funding
1 944 162 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym DarkComb
Project Dark-Soliton Engineering in Microresonator Frequency Combs
Researcher (PI) Victor TORRES COMPANY
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The continuing increase in Internet data traffic is pushing the capacity of single-mode fiber to its fundamental limits. Space division multiplexing (SDM) offers the only remaining physical degree of freedom – the space dimension in the transmission channel – to substantially increase the capacity in lightwave communication systems.
The microresonator comb is an emerging technology platform that enables the generation of an optical frequency comb in a micrometer-scale cavity. Its compact size and compatibility with established semiconductor fabrication techniques promises to revolutionize the fields of frequency synthesis and metrology, and create new mass-market applications.
I envision significant scaling advantages in future fiber-optic communications by merging SDM with microresonator frequency combs. One major obstacle to overcome here is the poor conversion efficiency that can be fundamentally obtained using the most stable and broadest combs generated in microresonators today. I propose to look into the generation of dark, as opposed to bright, temporal solitons in linearly coupled microresonators. The goal is to achieve reliable microresonator combs with exceptionally high power conversion efficiency, resulting in optimal characteristics for SDM applications. The scientific and technological possibilities of this achievement promise significant impact beyond the realm of fiber-optic communications.
My broad international experience, unique background in fiber communications, photonic waveguides and ultrafast photonics, the preliminary results of my group and the available infrastructure at my university place me in an outstanding position to pioneer this new direction of research.
Summary
The continuing increase in Internet data traffic is pushing the capacity of single-mode fiber to its fundamental limits. Space division multiplexing (SDM) offers the only remaining physical degree of freedom – the space dimension in the transmission channel – to substantially increase the capacity in lightwave communication systems.
The microresonator comb is an emerging technology platform that enables the generation of an optical frequency comb in a micrometer-scale cavity. Its compact size and compatibility with established semiconductor fabrication techniques promises to revolutionize the fields of frequency synthesis and metrology, and create new mass-market applications.
I envision significant scaling advantages in future fiber-optic communications by merging SDM with microresonator frequency combs. One major obstacle to overcome here is the poor conversion efficiency that can be fundamentally obtained using the most stable and broadest combs generated in microresonators today. I propose to look into the generation of dark, as opposed to bright, temporal solitons in linearly coupled microresonators. The goal is to achieve reliable microresonator combs with exceptionally high power conversion efficiency, resulting in optimal characteristics for SDM applications. The scientific and technological possibilities of this achievement promise significant impact beyond the realm of fiber-optic communications.
My broad international experience, unique background in fiber communications, photonic waveguides and ultrafast photonics, the preliminary results of my group and the available infrastructure at my university place me in an outstanding position to pioneer this new direction of research.
Max ERC Funding
2 259 523 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym DrivenByPollinators
Project Driven by mutualists: how declines in pollinators impact plant communities and ecosystemfunctioning
Researcher (PI) Yann Mats CLOUGH
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS8, ERC-2018-COG
Summary Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Summary
Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Max ERC Funding
1 998 842 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym Epi4MS
Project Targeting the epigenome: towards a better understanding of disease pathogenesis and novel therapeutic strategies in Multiple Sclerosis
Researcher (PI) Maja JAGODIC
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary Multiple Sclerosis (MS) is a leading cause of unpredictable and incurable progressive disability in young adults. Although the exact cause remains unknown, this immune-mediated disease is likely triggered by environmental factors in genetically predisposed individuals. I propose that epigenetic mechanisms, which regulate gene expression without affecting the genetic code, mediate the processes that cause MS and that aberrant epigenetic states can be corrected, spearheading the development of alternative therapies. We will exploit the stable and reversible nature of epigenetic marks, in particular DNA methylation, to gain insights into the novel modifiable disease mechanisms by studying the target organ in a way that has not been possible before. This highly ambitious project comprises three synergistic facets formulated in specific aims to: (i) identify epigenetic states that characterize the pathogenesis of MS, (ii) prioritize functional epigenetic states using high-throughput epigenome-screens, and (iii) develop novel approaches for precision medicine based on correcting causal epigenetic states. Our unique MS biobank combined with cutting-edge methodologies to capture pathogenic cells and measure their functional states provides a rational starting point to identify MS targets. I will complement this approach with studies of the functional impact of MS targets using innovative in vitro screens, with the added value of unbiased discovery of robust regulators of specific MS pathways. Finally, my laboratory has extensive experience with animal models of MS and I will utilize these powerful systems to dissect molecular mechanisms of MS targets and test the therapeutic potential of targeted epigenome editing in vivo. Our findings will set the stage for a paradigm-shift in studying and treating chronic inflammatory diseases based on preventing and modulating aggressive immune responses by inducing self-sustained reversal of aberrant epigenetic states.
Summary
Multiple Sclerosis (MS) is a leading cause of unpredictable and incurable progressive disability in young adults. Although the exact cause remains unknown, this immune-mediated disease is likely triggered by environmental factors in genetically predisposed individuals. I propose that epigenetic mechanisms, which regulate gene expression without affecting the genetic code, mediate the processes that cause MS and that aberrant epigenetic states can be corrected, spearheading the development of alternative therapies. We will exploit the stable and reversible nature of epigenetic marks, in particular DNA methylation, to gain insights into the novel modifiable disease mechanisms by studying the target organ in a way that has not been possible before. This highly ambitious project comprises three synergistic facets formulated in specific aims to: (i) identify epigenetic states that characterize the pathogenesis of MS, (ii) prioritize functional epigenetic states using high-throughput epigenome-screens, and (iii) develop novel approaches for precision medicine based on correcting causal epigenetic states. Our unique MS biobank combined with cutting-edge methodologies to capture pathogenic cells and measure their functional states provides a rational starting point to identify MS targets. I will complement this approach with studies of the functional impact of MS targets using innovative in vitro screens, with the added value of unbiased discovery of robust regulators of specific MS pathways. Finally, my laboratory has extensive experience with animal models of MS and I will utilize these powerful systems to dissect molecular mechanisms of MS targets and test the therapeutic potential of targeted epigenome editing in vivo. Our findings will set the stage for a paradigm-shift in studying and treating chronic inflammatory diseases based on preventing and modulating aggressive immune responses by inducing self-sustained reversal of aberrant epigenetic states.
Max ERC Funding
1 998 798 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym FERALGEN
Project The Genomics of Feralisation
Researcher (PI) Dominic WRIGHT
Host Institution (HI) LINKOPINGS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Feralisation is a complex process that occurs when a domestic population is returned to the wild. It impacts species invasion biology, speciation, conservation and hybridisation and can be thought of as the reverse of domestication. Domestication has been an area of intense interest and study ever since Darwin, and useful as a model for evolution and the effects of strong directional selection. This project will identify underlying genes and mechanisms of trade-offs and adaptations surrounding feralisation, by integrating population genetics, genome-wide association and functional genomics in a parallel (previously developed/established) feral and laboratory chicken system. Despite domestication being used to identify genes affecting a large number of traits that change with selection, almost nothing is known about the genomic changes associated with feralisation. The process of feralisation involves the sudden return of both natural and sexual selection; such forces influencing predatory, foraging and mate choice decisions, exerting strong effects on a once domesticated, now feral, population. As such, feralisation provides a unique opportunity to observe the genomic response to selection from a known (domesticated) standpoint, and identify the genes underlying these selective targets. The combination of feralisation with domestication provides a powerful tool to address a multitude of important questions currently predominating the field of biology. How do gene polymorphisms affect small-scale quantitative variation, particularly in wild population? How does the genome respond to selection, and how can (cryptic) variation be maintained and increased in the face of this selection? What mechanisms underlie gene and organismal trait variation. Feralisation combines the advantages of analysis conducted on natural populations (with the relevance to evolutionary theory and population genetics), with the genetic and genomic resources available to domestic animals.
Summary
Feralisation is a complex process that occurs when a domestic population is returned to the wild. It impacts species invasion biology, speciation, conservation and hybridisation and can be thought of as the reverse of domestication. Domestication has been an area of intense interest and study ever since Darwin, and useful as a model for evolution and the effects of strong directional selection. This project will identify underlying genes and mechanisms of trade-offs and adaptations surrounding feralisation, by integrating population genetics, genome-wide association and functional genomics in a parallel (previously developed/established) feral and laboratory chicken system. Despite domestication being used to identify genes affecting a large number of traits that change with selection, almost nothing is known about the genomic changes associated with feralisation. The process of feralisation involves the sudden return of both natural and sexual selection; such forces influencing predatory, foraging and mate choice decisions, exerting strong effects on a once domesticated, now feral, population. As such, feralisation provides a unique opportunity to observe the genomic response to selection from a known (domesticated) standpoint, and identify the genes underlying these selective targets. The combination of feralisation with domestication provides a powerful tool to address a multitude of important questions currently predominating the field of biology. How do gene polymorphisms affect small-scale quantitative variation, particularly in wild population? How does the genome respond to selection, and how can (cryptic) variation be maintained and increased in the face of this selection? What mechanisms underlie gene and organismal trait variation. Feralisation combines the advantages of analysis conducted on natural populations (with the relevance to evolutionary theory and population genetics), with the genetic and genomic resources available to domestic animals.
Max ERC Funding
1 989 590 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym FUN POLYSTORE
Project FUNctionalized POLYmer electrolytes for energy STORagE
Researcher (PI) Daniel BRANDELL
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), PE5, ERC-2017-COG
Summary Besides the need for large-scale implementation of renewable energy sources, there is an equivalent need for new energy storage solutions. This is not least true for the transport sector, where electric vehicles are expanding rapidly. The rich flora of battery chemistries – today crowned by the Li-ion battery – is likewise expected to expand in upcoming years. Novel types of batteries, “post-lithium ion”, will challenge the Li-ion chemistries by advantages in cost, sustainability, elemental abundance or energy density. This requires significant improvements of the materials, not least regarding the electrolyte. The conventional liquid battery electrolytes pose a problem already for the mature Li-ion chemistries due to safety and cost, but are particularly destructive for future battery types such as Li-metal, organic electrodes, Li-S, Li-O2, Na- or Mg-batteries, where rapid degradation and loss of material are associated with incompatibilities with the electrolytes. In this context, solid state polymer electrolytes (SPEs) could provide a considerable improvement.
The field of solid polymer electrolytes (SPEs) is dominated by polyethers, particularly poly(ethylene oxide) (PEO). This application regards moving out of the established PEO-paradigm and exploring alternative polymer hosts for SPEs, primarily polycarbonates and polyesters. These ‘alternative’ polymers are comparatively easy to work with synthetically, and their possible functionalization is straightforward. The work aims at exploring functionalized alternative polymer host for mechanically robust block-copolymer systems, for alternative cation chemistries (Na, Mg, etc.), for extremely high and low electrochemical potentials, and for unstable and easily dissolved electrode materials (sulfur, organic). Moreover, since the ion transport processes in the host materials are fundamentally different from polyethers, there is a need for investigating the conduction mechanisms using simulations.
Summary
Besides the need for large-scale implementation of renewable energy sources, there is an equivalent need for new energy storage solutions. This is not least true for the transport sector, where electric vehicles are expanding rapidly. The rich flora of battery chemistries – today crowned by the Li-ion battery – is likewise expected to expand in upcoming years. Novel types of batteries, “post-lithium ion”, will challenge the Li-ion chemistries by advantages in cost, sustainability, elemental abundance or energy density. This requires significant improvements of the materials, not least regarding the electrolyte. The conventional liquid battery electrolytes pose a problem already for the mature Li-ion chemistries due to safety and cost, but are particularly destructive for future battery types such as Li-metal, organic electrodes, Li-S, Li-O2, Na- or Mg-batteries, where rapid degradation and loss of material are associated with incompatibilities with the electrolytes. In this context, solid state polymer electrolytes (SPEs) could provide a considerable improvement.
The field of solid polymer electrolytes (SPEs) is dominated by polyethers, particularly poly(ethylene oxide) (PEO). This application regards moving out of the established PEO-paradigm and exploring alternative polymer hosts for SPEs, primarily polycarbonates and polyesters. These ‘alternative’ polymers are comparatively easy to work with synthetically, and their possible functionalization is straightforward. The work aims at exploring functionalized alternative polymer host for mechanically robust block-copolymer systems, for alternative cation chemistries (Na, Mg, etc.), for extremely high and low electrochemical potentials, and for unstable and easily dissolved electrode materials (sulfur, organic). Moreover, since the ion transport processes in the host materials are fundamentally different from polyethers, there is a need for investigating the conduction mechanisms using simulations.
Max ERC Funding
1 950 732 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym GENPARENT
Project Revealing Sources of Gendered Parenthood: A multi-method comparative study of the transition to parenthood in same-sex and different-sex couples
Researcher (PI) Paula Marie Madelen EVERTSSON
Host Institution (HI) STOCKHOLMS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH3, ERC-2017-COG
Summary This project is the first to apply an inclusive, internationally comparative, multi-methods approach to families to reveal the complex processes that result in a gendered division of work. We do this by comparing different-sex couples (DSC) to same-sex couples (SSC) focusing on the transition to parenthood and its career related consequences based on unique, population register data, census data and surveys, as well in depth interviews with couples. Three sub-projects emerge. In GENPARENT NORTH, longitudinal analyses of register data for the full population in the Nordic countries enable unique studies of the division of work and care in DSC and female SSC in a most similar-case comparison where the couples are matched on important background characteristics. In GENPARENT REGIME, the Nordic countries, the Netherlands and the US are compared in cross-sectional, quantitative analyses of female and male SSC and DSC with biological or adoptive children, their division of paid/unpaid work and the resulting career trajectories. Preliminary analyses indicate that family leave policies apply to some but not all families and this clearly structures the division of work and earnings in them. In GENPARENT VOICE, in-depth interviews with female and male SSC (planning for or having children) and adoptive DSC parents are carried out in order to explore the reasoning and expectations that precede the realized divisions of child care and paid work. In addition, the legal and social issues facing these families is highlighted. Interviews are conducted in Sweden and the Netherlands and for these countries, we have unique, longitudinal in-depth interviews with DSC expecting and having their first child. By comparing SSC to DSC and combining cross-sectional and longitudinal quantitative analyses with in-depth interviews, the GENPARENT project critically evaluate and develop theories on the gendered transition to parenthood, while expanding on and updating the welfare regime framework.
Summary
This project is the first to apply an inclusive, internationally comparative, multi-methods approach to families to reveal the complex processes that result in a gendered division of work. We do this by comparing different-sex couples (DSC) to same-sex couples (SSC) focusing on the transition to parenthood and its career related consequences based on unique, population register data, census data and surveys, as well in depth interviews with couples. Three sub-projects emerge. In GENPARENT NORTH, longitudinal analyses of register data for the full population in the Nordic countries enable unique studies of the division of work and care in DSC and female SSC in a most similar-case comparison where the couples are matched on important background characteristics. In GENPARENT REGIME, the Nordic countries, the Netherlands and the US are compared in cross-sectional, quantitative analyses of female and male SSC and DSC with biological or adoptive children, their division of paid/unpaid work and the resulting career trajectories. Preliminary analyses indicate that family leave policies apply to some but not all families and this clearly structures the division of work and earnings in them. In GENPARENT VOICE, in-depth interviews with female and male SSC (planning for or having children) and adoptive DSC parents are carried out in order to explore the reasoning and expectations that precede the realized divisions of child care and paid work. In addition, the legal and social issues facing these families is highlighted. Interviews are conducted in Sweden and the Netherlands and for these countries, we have unique, longitudinal in-depth interviews with DSC expecting and having their first child. By comparing SSC to DSC and combining cross-sectional and longitudinal quantitative analyses with in-depth interviews, the GENPARENT project critically evaluate and develop theories on the gendered transition to parenthood, while expanding on and updating the welfare regime framework.
Max ERC Funding
1 999 910 €
Duration
Start date: 2018-08-01, End date: 2023-07-31