Project acronym ASD
Project Atomistic Spin-Dynamics; Methodology and Applications
Researcher (PI) Olof Ragnar Eriksson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Our aim is to provide a theoretical framework for studies of dynamical aspects of magnetic materials and magnetisation reversal, which has potential for applications for magnetic data storage and magnetic memory devices. The project focuses on developing and using an atomistic spin dynamics simulation method. Our goal is to identify novel materials and device geometries with improved performance. The scientific questions which will be addressed concern the understanding of the fundamental temporal limit of magnetisation switching and reversal, and the mechanisms which govern this limit. The methodological developments concern the ability to, from first principles theory, calculate the interatomic exchange parameters of materials in general, in particular for correlated electron materials, via the use of dynamical mean-field theory. The theoretical development also involves an atomistic spin dynamics simulation method, which once it has been established, will be released as a public software package. The proposed theoretical research will be intimately connected to world-leading experimental efforts, especially in Europe where a leading activity in experimental studies of magnetisation dynamics has been established. The ambition with this project is to become world-leading in the theory of simulating spin-dynamics phenomena, and to promote education and training of young researchers. To achieve our goals we will build up an open and lively environment, where the advances in the theoretical knowledge of spin-dynamics phenomena will be used to address important questions in information technology. In this environment the next generation research leaders will be fostered and trained, thus ensuring that the society of tomorrow is equipped with the scientific competence to tackle the challenges of our future.
Summary
Our aim is to provide a theoretical framework for studies of dynamical aspects of magnetic materials and magnetisation reversal, which has potential for applications for magnetic data storage and magnetic memory devices. The project focuses on developing and using an atomistic spin dynamics simulation method. Our goal is to identify novel materials and device geometries with improved performance. The scientific questions which will be addressed concern the understanding of the fundamental temporal limit of magnetisation switching and reversal, and the mechanisms which govern this limit. The methodological developments concern the ability to, from first principles theory, calculate the interatomic exchange parameters of materials in general, in particular for correlated electron materials, via the use of dynamical mean-field theory. The theoretical development also involves an atomistic spin dynamics simulation method, which once it has been established, will be released as a public software package. The proposed theoretical research will be intimately connected to world-leading experimental efforts, especially in Europe where a leading activity in experimental studies of magnetisation dynamics has been established. The ambition with this project is to become world-leading in the theory of simulating spin-dynamics phenomena, and to promote education and training of young researchers. To achieve our goals we will build up an open and lively environment, where the advances in the theoretical knowledge of spin-dynamics phenomena will be used to address important questions in information technology. In this environment the next generation research leaders will be fostered and trained, thus ensuring that the society of tomorrow is equipped with the scientific competence to tackle the challenges of our future.
Max ERC Funding
2 130 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym DALDECS
Project Development and Application of Laser Diagnostic Techniques for Combustion Studies
Researcher (PI) Lars Eric Marcus Alden
Host Institution (HI) MAX IV Laboratory, Lund University
Country Sweden
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary This project is directed towards development of new laser diagnostic techniques and a deepened physical understanding of more established techniques, aiming at new insights in phenomena related to combustion processes. These non-intrusive techniques with high resolution in space and time, will be used for measurements of key parameters, species concentrations and temperatures. The techniques to be used are; Non-linear optical techniques, mainly Polarization spectroscopy, PS. PS will mainly be developed for sensitive detection with high spatial resolution of "new" species in the IR region, e.g. individual hydrocarbons, toxic species as well as alkali metal compounds. Multiplex measurements of these species and temperature will be developed as well as 2D visualization. Quantitative measurements with high precision and accuracy; Laser induced fluorescence and Rayleigh/Raman scattering will be developed for quantitative measurements of species concentration and 2D temperatures. Also a new technique will be developed for single ended experiments based on picosecond LIDAR. Advanced imaging techniques; New high speed (10-100 kHz) visualization techniques as well as 3D and even 4D visualization will be developed. In order to properly visualize dense sprays we will develop Ballistic Imaging as well as a new technique based on structured illumination of the area of interest for suppression of multiple scattering which normally cause blurring effects. All techniques developed above will be used for key studies of phenomena related to various combustion phenomena; turbulent combustion, multiphase conversion processes, e.g. spray combustion and gasification/pyrolysis of solid bio fuels. The techniques will also be applied for development and physical understanding of how combustion could be influenced by plasma/electrical assistance. Finally, the techniques will be prepared for applications in industrial combustion apparatus, e.g. furnaces, gasturbines and IC engines
Summary
This project is directed towards development of new laser diagnostic techniques and a deepened physical understanding of more established techniques, aiming at new insights in phenomena related to combustion processes. These non-intrusive techniques with high resolution in space and time, will be used for measurements of key parameters, species concentrations and temperatures. The techniques to be used are; Non-linear optical techniques, mainly Polarization spectroscopy, PS. PS will mainly be developed for sensitive detection with high spatial resolution of "new" species in the IR region, e.g. individual hydrocarbons, toxic species as well as alkali metal compounds. Multiplex measurements of these species and temperature will be developed as well as 2D visualization. Quantitative measurements with high precision and accuracy; Laser induced fluorescence and Rayleigh/Raman scattering will be developed for quantitative measurements of species concentration and 2D temperatures. Also a new technique will be developed for single ended experiments based on picosecond LIDAR. Advanced imaging techniques; New high speed (10-100 kHz) visualization techniques as well as 3D and even 4D visualization will be developed. In order to properly visualize dense sprays we will develop Ballistic Imaging as well as a new technique based on structured illumination of the area of interest for suppression of multiple scattering which normally cause blurring effects. All techniques developed above will be used for key studies of phenomena related to various combustion phenomena; turbulent combustion, multiphase conversion processes, e.g. spray combustion and gasification/pyrolysis of solid bio fuels. The techniques will also be applied for development and physical understanding of how combustion could be influenced by plasma/electrical assistance. Finally, the techniques will be prepared for applications in industrial combustion apparatus, e.g. furnaces, gasturbines and IC engines
Max ERC Funding
2 466 000 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym GLOBEGOV
Project The Rise of Global Environmental Governance:A History of the Contemporary Human-Earth Relationship
Researcher (PI) Sverker SoeRLIN
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Country Sweden
Call Details Advanced Grant (AdG), SH6, ERC-2017-ADG
Summary GLOBEGOVE is a historical study of humanity’s relation to planetary conditions and constraints and how it has become understood as a governance issue. The key argument is that Global Environmental Governance (GEG), which has arisen in response to this issue, is inseparable from the rise of a planetary Earth systems science and a knowledge-informed understanding of global change that has affected broad communities of practice. The overarching objective is to provide a fundamentally new perspective on GEG that challenges both previous linear, progressivist narratives through incremental institutional work and the way contemporary history is written and understood.
GLOBEGOVE will be implemented as an expressly global history along four Trajectories, which will ensure both transnational as well as transdisciplinary analysis of GEG as a major contemporary phenomenon.
Trajectory I: Formation articulates a proto-history of GEG after 1945 when the concept of ‘the environment’ in its new integrative meaning was established and a slow formation of policy ideas and institutions could start.
Trajectory II: The complicated turning of environmental research into governance investigates the relation between environmental science and environmental governance which GLOBEGOV examines as an open ended historical process. Why was it that high politics and diplomacy came in closer relations with environmental sciences?
Trajectory III: Alternative agencies – governance through business and civic society explores corporate responses, including self-regulation through the concept of Corporate Social Responsibility, to growing concerns about environmental degradation and pollution, and business-science relations.
Trajectory IV: Integrating Earth into History – scaling, mediating, remembering will turn to historiography itself and examine how concepts and ideas from the rising Earth system sciences have been influencing both GEG and the way we think historically about Earth and humanity.
Summary
GLOBEGOVE is a historical study of humanity’s relation to planetary conditions and constraints and how it has become understood as a governance issue. The key argument is that Global Environmental Governance (GEG), which has arisen in response to this issue, is inseparable from the rise of a planetary Earth systems science and a knowledge-informed understanding of global change that has affected broad communities of practice. The overarching objective is to provide a fundamentally new perspective on GEG that challenges both previous linear, progressivist narratives through incremental institutional work and the way contemporary history is written and understood.
GLOBEGOVE will be implemented as an expressly global history along four Trajectories, which will ensure both transnational as well as transdisciplinary analysis of GEG as a major contemporary phenomenon.
Trajectory I: Formation articulates a proto-history of GEG after 1945 when the concept of ‘the environment’ in its new integrative meaning was established and a slow formation of policy ideas and institutions could start.
Trajectory II: The complicated turning of environmental research into governance investigates the relation between environmental science and environmental governance which GLOBEGOV examines as an open ended historical process. Why was it that high politics and diplomacy came in closer relations with environmental sciences?
Trajectory III: Alternative agencies – governance through business and civic society explores corporate responses, including self-regulation through the concept of Corporate Social Responsibility, to growing concerns about environmental degradation and pollution, and business-science relations.
Trajectory IV: Integrating Earth into History – scaling, mediating, remembering will turn to historiography itself and examine how concepts and ideas from the rising Earth system sciences have been influencing both GEG and the way we think historically about Earth and humanity.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym GRINDOOR
Project Green Nanotechnology for the Indoor Environment
Researcher (PI) Claes-Goeran Sture Granqvist
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE5, ERC-2010-AdG_20100224
Summary The GRINDOOR project aims at developing and implementing new materials that enable huge energy savings in buildings and improve the quality of the indoor environment. About 40% of the primary energy, and 70% of the electricity, is used in buildings, and therefore the outcome of this project can have an impact on the long-term energy demand in the EU and the World. It is a highly focused study on new nanomaterials based on some transition metal oxides, which are used for four interrelated applications related to indoor lighting and indoor air: (i) electrochromic coatings are integrated in devices and used in “smart windows” to regulate the inflow of visible light and solar energy in order to minimize air condition and create indoor comfort, (ii) thermochromic nanoparticulate coatings are used on windows to provide large temperature-dependent control of the inflow of infrared solar radiation (in stand-alone cases as well as in conjunction with electrochromics), (iii) oxide-based gas sensors are used to measure indoor air quality especially with regard to formaldehyde, and (iv) photocatalytic coatings are used for indoor air cleaning. The investigated materials have many things in common and a joint and focused study, such as the one proposed here, will generate important new knowledge that can be transferred between the various sub-projects. The new oxide materials are prepared by advanced reactive gas deposition—using unique equipment—and high-pressure reactive dc magnetron sputtering. The materials are characterized and investigated by a wide range of state-of-the-art techniques.
Summary
The GRINDOOR project aims at developing and implementing new materials that enable huge energy savings in buildings and improve the quality of the indoor environment. About 40% of the primary energy, and 70% of the electricity, is used in buildings, and therefore the outcome of this project can have an impact on the long-term energy demand in the EU and the World. It is a highly focused study on new nanomaterials based on some transition metal oxides, which are used for four interrelated applications related to indoor lighting and indoor air: (i) electrochromic coatings are integrated in devices and used in “smart windows” to regulate the inflow of visible light and solar energy in order to minimize air condition and create indoor comfort, (ii) thermochromic nanoparticulate coatings are used on windows to provide large temperature-dependent control of the inflow of infrared solar radiation (in stand-alone cases as well as in conjunction with electrochromics), (iii) oxide-based gas sensors are used to measure indoor air quality especially with regard to formaldehyde, and (iv) photocatalytic coatings are used for indoor air cleaning. The investigated materials have many things in common and a joint and focused study, such as the one proposed here, will generate important new knowledge that can be transferred between the various sub-projects. The new oxide materials are prepared by advanced reactive gas deposition—using unique equipment—and high-pressure reactive dc magnetron sputtering. The materials are characterized and investigated by a wide range of state-of-the-art techniques.
Max ERC Funding
2 328 726 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym HIDDeN
Project HIDDeN - Exploring the Hidden Dusty Nuclei of Galaxies
Researcher (PI) Eva Susanne AALTO
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Advanced Grant (AdG), PE9, ERC-2017-ADG
Summary Luminous infrared galaxies (LIRGs) emit most of their bolometric luminosity in the far-infrared. They are mainly powered by extreme bursts of star formation and/or Active Galactic Nuclei (AGNs; accreting supermassive black holes (SMBHs)) in their centres. LIRGs are the closest examples of rapid evolution in galaxies and a detailed study of LIRGs is critical for our understanding of the cosmic evolution of galaxies and SMBHs. Centres of some LIRGs are deeply obscured and unreachable at optical, IR and even X-ray wavelengths. These hidden nuclei therefore represent a largely unexplored phase of the growth of central regions with their SMBHs. Large growth spurts are suspected to occur when the SMBHs are deeply embedded. Obscured AGNs thus can provide new constraints on the AGN duty cycle, give the full range of environments and astrophysical processes that drive the growth of SMBHs, and help to complete the picture of connections between the host galaxy and SMBH. Many dust embedded AGNs are still to be discovered as studies suggest that a significant fraction of SMBHs may be obscured in the local and more distant Universe.
In the HIDDeN project we use mm and submm observational methods to reach behind the curtain of dust in the most embedded centres of LIRGs, allowing us to undertake ground-breaking studies of heretofore hidden rapid evolutionary phases of nearby galaxy nuclei. HIDDeN takes advantage of emerging opportunities to address the nature of near-field, and redshift z=1-2, obscured AGNs/starbursts and their associated molecular inflows and outflows in the context of their evolution and the starburst-AGN connection. In particular we use the ALMA and NOEMA telescopes, supported by JVLA, LOFAR, HST and future JWST observations, to address four interconnected goals: A. Probing the Dusty Interiors of Compact Obscured Nuclei (CONs), B. The cold winds of change - Molecular Outflows from LIRGs and AGNs, C. The Co-Evolution of Starbursts and AGNs and D. Are there hidden CONs at z=1-2
Summary
Luminous infrared galaxies (LIRGs) emit most of their bolometric luminosity in the far-infrared. They are mainly powered by extreme bursts of star formation and/or Active Galactic Nuclei (AGNs; accreting supermassive black holes (SMBHs)) in their centres. LIRGs are the closest examples of rapid evolution in galaxies and a detailed study of LIRGs is critical for our understanding of the cosmic evolution of galaxies and SMBHs. Centres of some LIRGs are deeply obscured and unreachable at optical, IR and even X-ray wavelengths. These hidden nuclei therefore represent a largely unexplored phase of the growth of central regions with their SMBHs. Large growth spurts are suspected to occur when the SMBHs are deeply embedded. Obscured AGNs thus can provide new constraints on the AGN duty cycle, give the full range of environments and astrophysical processes that drive the growth of SMBHs, and help to complete the picture of connections between the host galaxy and SMBH. Many dust embedded AGNs are still to be discovered as studies suggest that a significant fraction of SMBHs may be obscured in the local and more distant Universe.
In the HIDDeN project we use mm and submm observational methods to reach behind the curtain of dust in the most embedded centres of LIRGs, allowing us to undertake ground-breaking studies of heretofore hidden rapid evolutionary phases of nearby galaxy nuclei. HIDDeN takes advantage of emerging opportunities to address the nature of near-field, and redshift z=1-2, obscured AGNs/starbursts and their associated molecular inflows and outflows in the context of their evolution and the starburst-AGN connection. In particular we use the ALMA and NOEMA telescopes, supported by JVLA, LOFAR, HST and future JWST observations, to address four interconnected goals: A. Probing the Dusty Interiors of Compact Obscured Nuclei (CONs), B. The cold winds of change - Molecular Outflows from LIRGs and AGNs, C. The Co-Evolution of Starbursts and AGNs and D. Are there hidden CONs at z=1-2
Max ERC Funding
2 496 319 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym INSYSBIO
Project Industrial Systems Biology of Yeast and A. oryzae
Researcher (PI) Jens Nielsen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Advanced Grant (AdG), PE8, ERC-2009-AdG
Summary Metabolic engineering is the development of new cell factories or improving existing ones, and it is the enabling science that allows for sustainable production of fuels and chemicals through biotechnology. With the development in genomics and functional genomics, it has become interesting to evaluate how advanced high-throughput experimental techniques (transcriptome, proteome, metabolome and fluxome) can be applied for improving the process of metabolic engineering. These techniques have mainly found applications in life sciences and studies of human health, and it is necessary to develop novel bioinformatics techniques and modelling concepts before they can provide physiological information that can be used to guide metabolic engineering strategies. In particular it is challenging how these techniques can be used to advance the use of mathematical modelling for description of the operation of complex metabolic networks. The availability of robust mathematical models will allow a wider use of mathematical models to drive metabolic engineering, in analogy with other fields of engineering where mathematical modelling is central in the design phase. In this project the advancement of novel concepts, models and technologies for enhancing metabolic engineering will be done in connection with the development of novel cell factories for high-level production of different classes of products. The chemicals considered will involve both commodity type chemicals like 3-hydroxypropionic acid and malic acid, that can be used for sustainable production of polymers, an industrial enzyme and pharmaceutical proteins like human insulin.
Summary
Metabolic engineering is the development of new cell factories or improving existing ones, and it is the enabling science that allows for sustainable production of fuels and chemicals through biotechnology. With the development in genomics and functional genomics, it has become interesting to evaluate how advanced high-throughput experimental techniques (transcriptome, proteome, metabolome and fluxome) can be applied for improving the process of metabolic engineering. These techniques have mainly found applications in life sciences and studies of human health, and it is necessary to develop novel bioinformatics techniques and modelling concepts before they can provide physiological information that can be used to guide metabolic engineering strategies. In particular it is challenging how these techniques can be used to advance the use of mathematical modelling for description of the operation of complex metabolic networks. The availability of robust mathematical models will allow a wider use of mathematical models to drive metabolic engineering, in analogy with other fields of engineering where mathematical modelling is central in the design phase. In this project the advancement of novel concepts, models and technologies for enhancing metabolic engineering will be done in connection with the development of novel cell factories for high-level production of different classes of products. The chemicals considered will involve both commodity type chemicals like 3-hydroxypropionic acid and malic acid, that can be used for sustainable production of polymers, an industrial enzyme and pharmaceutical proteins like human insulin.
Max ERC Funding
2 499 590 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym LEARN
Project Limitations, Estimation, Adaptivity, Reinforcement and Networks in System Identification
Researcher (PI) Lennart Ljung
Host Institution (HI) LINKOPINGS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE7, ERC-2010-AdG_20100224
Summary The objective with this proposal is to provide design tools and algorithms for model management in robust, adaptive and autonomous engineering systems. The increasing demands on reliable models for systems of ever greater complexity have pointed to several insufficiencies in today's techniques for model construction. The proposal addresses key areas where new ideas are required. Modeling a central issue in many scientific fields. System Identification is the term used in the Automatic Control Community for the area of building mathematical models of dynamical systems from observed input and output signals, but several other research communities work with the same problem under different names, such as (data-driven) learning.
We have identified five specific themes where progress is both acutely needed and feasible:
1. Encounters with Convex Programming Techniques: How to capitalize on the remarkable recent progress in convex and semidefinite programming to obtain efficient, robust and reliable algorithmic solutions.
2. Fundamental Limitations: To develop and elucidate what are the limits of model accuracy, regardless of the modeling method. This can be seen as a theory rooted in the Cramer-Rao inequality in the spirit of invariance results and lower bounds characterizing, e.g., Information Theory.
3. Experiment Design and Reinforcement Techniques: Study how well tailored and ``cheap'' experiments can extract essential information about isolated model properties. Also study how such methods may relate to general reinforcement techniques.
4. Potentials of Non-parametric Models: How to incorporate and adjust techniques from adjacent research communities, e.g. concerning manifold learning and Gaussian Processes in machine learning.
5. Managing Structural Constraints: To develop structure preserving identification methods for networked and decentralized systems.
We have ideas how to approach each of these themes, and initial attempts are promising.
Summary
The objective with this proposal is to provide design tools and algorithms for model management in robust, adaptive and autonomous engineering systems. The increasing demands on reliable models for systems of ever greater complexity have pointed to several insufficiencies in today's techniques for model construction. The proposal addresses key areas where new ideas are required. Modeling a central issue in many scientific fields. System Identification is the term used in the Automatic Control Community for the area of building mathematical models of dynamical systems from observed input and output signals, but several other research communities work with the same problem under different names, such as (data-driven) learning.
We have identified five specific themes where progress is both acutely needed and feasible:
1. Encounters with Convex Programming Techniques: How to capitalize on the remarkable recent progress in convex and semidefinite programming to obtain efficient, robust and reliable algorithmic solutions.
2. Fundamental Limitations: To develop and elucidate what are the limits of model accuracy, regardless of the modeling method. This can be seen as a theory rooted in the Cramer-Rao inequality in the spirit of invariance results and lower bounds characterizing, e.g., Information Theory.
3. Experiment Design and Reinforcement Techniques: Study how well tailored and ``cheap'' experiments can extract essential information about isolated model properties. Also study how such methods may relate to general reinforcement techniques.
4. Potentials of Non-parametric Models: How to incorporate and adjust techniques from adjacent research communities, e.g. concerning manifold learning and Gaussian Processes in machine learning.
5. Managing Structural Constraints: To develop structure preserving identification methods for networked and decentralized systems.
We have ideas how to approach each of these themes, and initial attempts are promising.
Max ERC Funding
2 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym MATHFOR
Project Formalization of Constructive Mathematics
Researcher (PI) Thierry Coquand
Host Institution (HI) GOETEBORGS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE6, ERC-2009-AdG
Summary The general theme is to explore the connections between reasoning and computations in mathematics. There are two main research directions. The first research direction is a refomulation of Hilbert's program, using ideas from formal, or pointfree topology. We have shown, with multiple examples, that this allows a partial realization of this program in commutative algebra, and a new way to formulate constructive mathematics. The second research direction explores the computational content using type theory and the Curry-Howard correspondence between proofs and programs. Type theory allows us to represent constructive mathematics in a formal way, and provides key insight for the design of proof systems helping in the analysis of the logical structure of mathematical proofs. The interest of this program is well illustrated by the recent work of G. Gonthier on the formalization of the 4 color theorem.
Summary
The general theme is to explore the connections between reasoning and computations in mathematics. There are two main research directions. The first research direction is a refomulation of Hilbert's program, using ideas from formal, or pointfree topology. We have shown, with multiple examples, that this allows a partial realization of this program in commutative algebra, and a new way to formulate constructive mathematics. The second research direction explores the computational content using type theory and the Curry-Howard correspondence between proofs and programs. Type theory allows us to represent constructive mathematics in a formal way, and provides key insight for the design of proof systems helping in the analysis of the logical structure of mathematical proofs. The interest of this program is well illustrated by the recent work of G. Gonthier on the formalization of the 4 color theorem.
Max ERC Funding
1 912 288 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym MSTAR
Project Massive Star Formation through the Universe
Researcher (PI) Jonathan TAN
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Advanced Grant (AdG), PE9, ERC-2017-ADG
Summary Massive stars are important throughout astrophysics, yet there remain many open questions about how they form. These include: What is the accretion mechanism of massive star formation? What sets the initial mass function of stars, especially at the highest masses? What is the relation of massive star formation to star cluster formation? How do massive star and star cluster formation vary with galactic environment? What was the nature of the first stars to form in the universe and could these have been the seeds for supermassive black holes? With recent advances in both theoretical/computational techniques and observational facilities, the time is now ripe for progress on answering these questions.
Here we propose an ambitious research program that combines latest theoretical studies of massive star and star cluster formation, including analytic, semi-analytic and full numerical simulations, with state-of-the-art observational programs, including several large surveys. We will: 1) Develop new theoretical models for how individual massive stars form from gas cores, focusing on diagnostics and including study of how the process depends on galactic environment; 2) Test these protostar models against observations, especially with ALMA, SOFIA, JVLA, HST and in the near future with JWST and eventually TMT & E-ELT; 3) Develop theoretical models for star cluster formation, including both magneto-hydrodynamics of the gas and N-body modeling of the young stellar population, with the focus on how massive stars form and evolve in these systems; 4) Test these protocluster models against observational data of young and still-forming star clusters, especially with ALMA, HST, Chandra, JWST and ground-based near-IR facilities; 5) Explore new theoretical models of how the first stars formed, with potential implications for the origins of supermassive black holes - one of the key unsolved problems in astrophysics.
Summary
Massive stars are important throughout astrophysics, yet there remain many open questions about how they form. These include: What is the accretion mechanism of massive star formation? What sets the initial mass function of stars, especially at the highest masses? What is the relation of massive star formation to star cluster formation? How do massive star and star cluster formation vary with galactic environment? What was the nature of the first stars to form in the universe and could these have been the seeds for supermassive black holes? With recent advances in both theoretical/computational techniques and observational facilities, the time is now ripe for progress on answering these questions.
Here we propose an ambitious research program that combines latest theoretical studies of massive star and star cluster formation, including analytic, semi-analytic and full numerical simulations, with state-of-the-art observational programs, including several large surveys. We will: 1) Develop new theoretical models for how individual massive stars form from gas cores, focusing on diagnostics and including study of how the process depends on galactic environment; 2) Test these protostar models against observations, especially with ALMA, SOFIA, JVLA, HST and in the near future with JWST and eventually TMT & E-ELT; 3) Develop theoretical models for star cluster formation, including both magneto-hydrodynamics of the gas and N-body modeling of the young stellar population, with the focus on how massive stars form and evolve in these systems; 4) Test these protocluster models against observational data of young and still-forming star clusters, especially with ALMA, HST, Chandra, JWST and ground-based near-IR facilities; 5) Explore new theoretical models of how the first stars formed, with potential implications for the origins of supermassive black holes - one of the key unsolved problems in astrophysics.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym NanoBioNext
Project Nanoscale Biomeasurements of Nerve Cells and Vesicles: Molecular Substructure and the Nature of Exocytosis
Researcher (PI) Andrew EWING
Host Institution (HI) GOETEBORGS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE4, ERC-2017-ADG
Summary I propose to develop and apply state of the art analytical methods to investigate cell membrane and vesicle substructure to elucidate the chemistry of the closing regulatory phase of individual exocytosis events. The general goal of this proposal is to develop a new brand of analytical nanoelectrochemistry (nanogap and nanopore electrochemical cytometry), combined with chemical nanoscopy imaging methods with STED and nanoscale mass spectrometry imaging. I propose to apply this to the questions of the nature of exocytosis and the chemistry that initiates the process of a short-term memory. We have recently discovered that most neurotransmitter release is partial via an open and closed vesicle release process and this allows new mechanisms of plasticity and synaptic strength to be hypothesized. I propose to (i) test if partial release is ubiquitous phenomenon, (ii) develop new nanoscale analytical methods to measure exocytotic release from pancreatic beta cells and a neuron in Drosophila, and to elucidate the substructure of nanometer vesicles, (iii) use these analytical methods in model cells and neurons to test the hypothesis that lipid membrane changes are involved in the initiation of the chemical events leading to short-term memory, and (iv) test the effects of drugs and zinc on plasticity of vesicles and exocytosis. This work combines new method development with a revolutionary application of chemical analysis to test the hypothesis that lipids play a previously unanticipated role in synaptic plasticity and the chemical structures involved in the initiation of short-term memory. As long-term impact, this will provide sensitive analytical tools to understand how changes in these chemical species might be affected in relation to diseases involving short-term memory loss.
Summary
I propose to develop and apply state of the art analytical methods to investigate cell membrane and vesicle substructure to elucidate the chemistry of the closing regulatory phase of individual exocytosis events. The general goal of this proposal is to develop a new brand of analytical nanoelectrochemistry (nanogap and nanopore electrochemical cytometry), combined with chemical nanoscopy imaging methods with STED and nanoscale mass spectrometry imaging. I propose to apply this to the questions of the nature of exocytosis and the chemistry that initiates the process of a short-term memory. We have recently discovered that most neurotransmitter release is partial via an open and closed vesicle release process and this allows new mechanisms of plasticity and synaptic strength to be hypothesized. I propose to (i) test if partial release is ubiquitous phenomenon, (ii) develop new nanoscale analytical methods to measure exocytotic release from pancreatic beta cells and a neuron in Drosophila, and to elucidate the substructure of nanometer vesicles, (iii) use these analytical methods in model cells and neurons to test the hypothesis that lipid membrane changes are involved in the initiation of the chemical events leading to short-term memory, and (iv) test the effects of drugs and zinc on plasticity of vesicles and exocytosis. This work combines new method development with a revolutionary application of chemical analysis to test the hypothesis that lipids play a previously unanticipated role in synaptic plasticity and the chemical structures involved in the initiation of short-term memory. As long-term impact, this will provide sensitive analytical tools to understand how changes in these chemical species might be affected in relation to diseases involving short-term memory loss.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-08-01, End date: 2023-07-31