Project acronym 4DRepLy
Project Closing the 4D Real World Reconstruction Loop
Researcher (PI) Christian THEOBALT
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Country Germany
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary 4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Summary
4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Max ERC Funding
1 977 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Country Ireland
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AFIRMATIVE
Project Acoustic-Flow Interaction Models for Advancing Thermoacoustic Instability prediction in Very low Emission combustors
Researcher (PI) Aimee MORGANS
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Country United Kingdom
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary Gas turbines are an essential ingredient in the long-term energy and aviation mix. They are flexible, offer fast start-up and the ability to burn renewable-generated fuels. However, they generate NOx emissions, which cause air pollution and damage human health, and reducing these is an air quality imperative. A major hurdle to this is that lean premixed combustion, essential for further NOx emission reductions, is highly susceptible to thermoacoustic instability. This is caused by a two-way coupling between unsteady combustion and acoustic waves, and the resulting large pressure oscillations can cause severe mechanical damage. Computational methods for predicting thermoacoustic instability, fast and accurate enough to be used as part of the industrial design process, are urgently needed.
The only computational methods with the prospect of being fast enough are those based on coupled treatment of the acoustic waves and unsteady combustion. These exploit the amenity of the acoustic waves to analytical modelling, allowing costly simulations to be directed only at the more complex flame. They show real promise: my group recently demonstrated the first accurate coupled predictions for lab-scale combustors. The method does not yet extend to industrial combustors, the more complex flow-fields in these rendering current acoustic models overly-simplistic. I propose to comprehensively overhaul acoustic models across the entirety of the combustor, accounting for real and important acoustic-flow interactions. These new models will offer the breakthrough prospect of extending efficient, accurate predictive capability to industrial combustors, which has a real chance of facilitating future, instability free, very low NOx gas turbines.
Summary
Gas turbines are an essential ingredient in the long-term energy and aviation mix. They are flexible, offer fast start-up and the ability to burn renewable-generated fuels. However, they generate NOx emissions, which cause air pollution and damage human health, and reducing these is an air quality imperative. A major hurdle to this is that lean premixed combustion, essential for further NOx emission reductions, is highly susceptible to thermoacoustic instability. This is caused by a two-way coupling between unsteady combustion and acoustic waves, and the resulting large pressure oscillations can cause severe mechanical damage. Computational methods for predicting thermoacoustic instability, fast and accurate enough to be used as part of the industrial design process, are urgently needed.
The only computational methods with the prospect of being fast enough are those based on coupled treatment of the acoustic waves and unsteady combustion. These exploit the amenity of the acoustic waves to analytical modelling, allowing costly simulations to be directed only at the more complex flame. They show real promise: my group recently demonstrated the first accurate coupled predictions for lab-scale combustors. The method does not yet extend to industrial combustors, the more complex flow-fields in these rendering current acoustic models overly-simplistic. I propose to comprehensively overhaul acoustic models across the entirety of the combustor, accounting for real and important acoustic-flow interactions. These new models will offer the breakthrough prospect of extending efficient, accurate predictive capability to industrial combustors, which has a real chance of facilitating future, instability free, very low NOx gas turbines.
Max ERC Funding
1 985 288 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym AMPERE
Project Accounting for Metallicity, Polarization of the Electrolyte, and Redox reactions in computational Electrochemistry
Researcher (PI) Mathieu Eric Salanne
Host Institution (HI) SORBONNE UNIVERSITE
Country France
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Applied electrochemistry plays a key role in many technologies, such as batteries, fuel cells, supercapacitors or solar cells. It is therefore at the core of many research programs all over the world. Yet, fundamental electrochemical investigations remain scarce. In particular, electrochemistry is among the fields for which the gap between theory and experiment is the largest. From the computational point of view, there is no molecular dynamics (MD) software devoted to the simulation of electrochemical systems while other fields such as biochemistry (GROMACS) or material science (LAMMPS) have dedicated tools. This is due to the difficulty of accounting for complex effects arising from (i) the degree of metallicity of the electrode (i.e. from semimetals to perfect conductors), (ii) the mutual polarization occurring at the electrode/electrolyte interface and (iii) the redox reactivity through explicit electron transfers. Current understanding therefore relies on standard theories that derive from an inaccurate molecular-scale picture. My objective is to fill this gap by introducing a whole set of new methods for simulating electrochemical systems. They will be provided to the computational electrochemistry community as a cutting-edge MD software adapted to supercomputers. First applications will aim at the discovery of new electrolytes for energy storage. Here I will focus on (1) ‘‘water-in-salts’’ to understand why these revolutionary liquids enable much higher voltage than conventional solutions (2) redox reactions inside a nanoporous electrode to support the development of future capacitive energy storage devices. These selected applications are timely and rely on collaborations with leading experimental partners. The results are expected to shed an unprecedented light on the importance of polarization effects on the structure and the reactivity of electrode/electrolyte interfaces, establishing MD as a prominent tool for solving complex electrochemistry problems.
Summary
Applied electrochemistry plays a key role in many technologies, such as batteries, fuel cells, supercapacitors or solar cells. It is therefore at the core of many research programs all over the world. Yet, fundamental electrochemical investigations remain scarce. In particular, electrochemistry is among the fields for which the gap between theory and experiment is the largest. From the computational point of view, there is no molecular dynamics (MD) software devoted to the simulation of electrochemical systems while other fields such as biochemistry (GROMACS) or material science (LAMMPS) have dedicated tools. This is due to the difficulty of accounting for complex effects arising from (i) the degree of metallicity of the electrode (i.e. from semimetals to perfect conductors), (ii) the mutual polarization occurring at the electrode/electrolyte interface and (iii) the redox reactivity through explicit electron transfers. Current understanding therefore relies on standard theories that derive from an inaccurate molecular-scale picture. My objective is to fill this gap by introducing a whole set of new methods for simulating electrochemical systems. They will be provided to the computational electrochemistry community as a cutting-edge MD software adapted to supercomputers. First applications will aim at the discovery of new electrolytes for energy storage. Here I will focus on (1) ‘‘water-in-salts’’ to understand why these revolutionary liquids enable much higher voltage than conventional solutions (2) redox reactions inside a nanoporous electrode to support the development of future capacitive energy storage devices. These selected applications are timely and rely on collaborations with leading experimental partners. The results are expected to shed an unprecedented light on the importance of polarization effects on the structure and the reactivity of electrode/electrolyte interfaces, establishing MD as a prominent tool for solving complex electrochemistry problems.
Max ERC Funding
1 588 769 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym APOGEE
Project Atomic-scale physics of single-photon sources.
Researcher (PI) GUILLAUME ARTHUR FRANCOIS SCHULL
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE3, ERC-2017-COG
Summary Single-photon sources (SPSs) are systems capable of emitting photons one by one. These sources are of major importance for quantum-information science and applications. SPSs experiments generally rely on the optical excitation of two level systems of atomic-scale dimensions (single-molecules, vacancies in diamond…). Many fundamental questions related to the nature of these sources and the impact of their environment remain to be explored:
Can SPSs be addressed with atomic-scale spatial accuracy? How do the nanometer-scale distance or the orientation between two (or more) SPSs affect their emission properties? Does coherence emerge from the proximity between the sources? Do these structures still behave as SPSs or do they lead to the emission of correlated photons? How can we then control the degree of entanglement between the sources? Can we remotely excite the emission of these sources by using molecular chains as charge-carrying wires? Can we couple SPSs embodied in one or two-dimensional arrays? How does mechanical stress or localised plasmons affect the properties of an electrically-driven SPS?
Answering these questions requires probing, manipulating and exciting SPSs with an atomic-scale precision. This is beyond what is attainable with an all-optical method. Since they can be confined to atomic-scale pathways we propose to use electrons rather than photons to excite the SPSs. This unconventional approach provides a direct access to the atomic-scale physics of SPSs and is relevant for the implementation of these sources in hybrid devices combining electronic and photonic components. To this end, a scanning probe microscope will be developed that provides simultaneous spatial, chemical, spectral, and temporal resolutions. Single-molecules and defects in monolayer transition metal dichalcogenides are SPSs that will be studied in the project, and which are respectively of interest for fundamental and more applied issues.
Summary
Single-photon sources (SPSs) are systems capable of emitting photons one by one. These sources are of major importance for quantum-information science and applications. SPSs experiments generally rely on the optical excitation of two level systems of atomic-scale dimensions (single-molecules, vacancies in diamond…). Many fundamental questions related to the nature of these sources and the impact of their environment remain to be explored:
Can SPSs be addressed with atomic-scale spatial accuracy? How do the nanometer-scale distance or the orientation between two (or more) SPSs affect their emission properties? Does coherence emerge from the proximity between the sources? Do these structures still behave as SPSs or do they lead to the emission of correlated photons? How can we then control the degree of entanglement between the sources? Can we remotely excite the emission of these sources by using molecular chains as charge-carrying wires? Can we couple SPSs embodied in one or two-dimensional arrays? How does mechanical stress or localised plasmons affect the properties of an electrically-driven SPS?
Answering these questions requires probing, manipulating and exciting SPSs with an atomic-scale precision. This is beyond what is attainable with an all-optical method. Since they can be confined to atomic-scale pathways we propose to use electrons rather than photons to excite the SPSs. This unconventional approach provides a direct access to the atomic-scale physics of SPSs and is relevant for the implementation of these sources in hybrid devices combining electronic and photonic components. To this end, a scanning probe microscope will be developed that provides simultaneous spatial, chemical, spectral, and temporal resolutions. Single-molecules and defects in monolayer transition metal dichalcogenides are SPSs that will be studied in the project, and which are respectively of interest for fundamental and more applied issues.
Max ERC Funding
1 996 848 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym ARTISTIC
Project Advanced and Reusable Theory for the In Silico-optimization of composite electrode fabrication processes for rechargeable battery Technologies with Innovative Chemistries
Researcher (PI) Alejandro Antonio FRANCO
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary The aim of this project is to develop and to demonstrate a novel theoretical framework devoted to rationalizing the formulation of composite electrodes containing next-generation material chemistries for high energy density secondary batteries. The framework will be established through the combination of discrete particle and continuum mathematical models within a multiscale computational workflow integrating the individual models and mimicking the different steps along the electrode fabrication process, including slurry preparation, drying and calendering. Strongly complemented by dedicated experimental characterizations which are devoted to its validation, the goal of this framework is to provide insights about the impacts of material properties and fabrication process parameters on the electrode mesostructures and their corresponding correlation to the resulting electrochemical performance. It targets self-organization mechanisms of material mixtures in slurries by considering the interactions between the active and conductive materials, solvent, binders and dispersants and the relationship between the materials properties such as surface chemistry and wettability. Optimal electrode formulation, fabrication process and the arising electrode mesostructure can then be achieved. Additionally, the framework will be integrated into an online and open access infrastructure, allowing predictive direct and reverse engineering for optimized electrode designs to attain high quality electrochemical performances. Through the demonstration of a multidisciplinary, flexible and transferable framework, this project has tremendous potential to provide insights leading to proposals of new and highly efficient industrial techniques for the fabrication of cheaper and reliable next-generation secondary battery electrodes for a wide spectrum of applications, including Electric Transportation.
Summary
The aim of this project is to develop and to demonstrate a novel theoretical framework devoted to rationalizing the formulation of composite electrodes containing next-generation material chemistries for high energy density secondary batteries. The framework will be established through the combination of discrete particle and continuum mathematical models within a multiscale computational workflow integrating the individual models and mimicking the different steps along the electrode fabrication process, including slurry preparation, drying and calendering. Strongly complemented by dedicated experimental characterizations which are devoted to its validation, the goal of this framework is to provide insights about the impacts of material properties and fabrication process parameters on the electrode mesostructures and their corresponding correlation to the resulting electrochemical performance. It targets self-organization mechanisms of material mixtures in slurries by considering the interactions between the active and conductive materials, solvent, binders and dispersants and the relationship between the materials properties such as surface chemistry and wettability. Optimal electrode formulation, fabrication process and the arising electrode mesostructure can then be achieved. Additionally, the framework will be integrated into an online and open access infrastructure, allowing predictive direct and reverse engineering for optimized electrode designs to attain high quality electrochemical performances. Through the demonstration of a multidisciplinary, flexible and transferable framework, this project has tremendous potential to provide insights leading to proposals of new and highly efficient industrial techniques for the fabrication of cheaper and reliable next-generation secondary battery electrodes for a wide spectrum of applications, including Electric Transportation.
Max ERC Funding
1 976 445 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ASA
Project Understanding Statehood through Architecture: a comparative study of Africa's state buildings
Researcher (PI) Julia Catherine GALLAGHER
Host Institution (HI) SCHOOL OF ORIENTAL AND AFRICAN STUDIES ROYAL CHARTER
Country United Kingdom
Call Details Consolidator Grant (CoG), SH2, ERC-2017-COG
Summary The project will develop a new ethnography of statehood through architecture. It goes beyond conventional approaches to statehood, which describe states as an objectively existing set of tools used to run a country, and critical approaches that understand them as discursive constructs. Instead, this research understands statehood as a result of the relationship between functions and symbols, and will read it through an innovative new methodology, namely a study of state architecture.
The study will focus on state buildings in Africa. African statehood, uncertain and often ambiguous, in many cases profoundly shaped by colonial heritages and post-colonial relationships, is reflected in classical-colonial, modernist-nationalist and post-modern or vernacular styles of architecture. African state buildings reveal the complex interplay of ideas, activities and relationships that together constitute an often uncomfortable statehood. They symbolise the state, embodying and projecting ideas of it through their aesthetics; they enable its concrete functions and processes; and they reveal what citizens think about the state in the ways they describe and negotiate them.
The study is comparative, multi-layered and interdisciplinary. It focuses on seven countries (South Africa, Tanzania, DR Congo, Ethiopia, Ghana, Côte d’Ivoire and Guinea Bissau), exploring politics and statehood on domestic, regional and international levels, and drawing on theory and methods from political science, history, sociology, art and architecture theory. It employs innovative ethnographic methods, including the collection and display of photographs in interactive exhibitions staged in Africa to explore the ways citizens think about and use state buildings.
This project will provide an innovative reading of how African statehood is expressed and how it looks and feels to African citizens. In doing this, it will make a distinctive new contribution to understanding how statehood works everywhere.
Summary
The project will develop a new ethnography of statehood through architecture. It goes beyond conventional approaches to statehood, which describe states as an objectively existing set of tools used to run a country, and critical approaches that understand them as discursive constructs. Instead, this research understands statehood as a result of the relationship between functions and symbols, and will read it through an innovative new methodology, namely a study of state architecture.
The study will focus on state buildings in Africa. African statehood, uncertain and often ambiguous, in many cases profoundly shaped by colonial heritages and post-colonial relationships, is reflected in classical-colonial, modernist-nationalist and post-modern or vernacular styles of architecture. African state buildings reveal the complex interplay of ideas, activities and relationships that together constitute an often uncomfortable statehood. They symbolise the state, embodying and projecting ideas of it through their aesthetics; they enable its concrete functions and processes; and they reveal what citizens think about the state in the ways they describe and negotiate them.
The study is comparative, multi-layered and interdisciplinary. It focuses on seven countries (South Africa, Tanzania, DR Congo, Ethiopia, Ghana, Côte d’Ivoire and Guinea Bissau), exploring politics and statehood on domestic, regional and international levels, and drawing on theory and methods from political science, history, sociology, art and architecture theory. It employs innovative ethnographic methods, including the collection and display of photographs in interactive exhibitions staged in Africa to explore the ways citizens think about and use state buildings.
This project will provide an innovative reading of how African statehood is expressed and how it looks and feels to African citizens. In doing this, it will make a distinctive new contribution to understanding how statehood works everywhere.
Max ERC Funding
1 870 665 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ASIAPAST
Project From herds to empire: Biomolecular and zooarchaeological investigations of mobile pastoralism in the ancient Eurasian steppe
Researcher (PI) Cheryl Ann Makarewicz
Host Institution (HI) CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
Country Germany
Call Details Consolidator Grant (CoG), SH6, ERC-2017-COG
Summary The emergence of mobile pastoralism in the Eurasian steppe five thousand years ago marked a unique transformation in human lifeways where, for the first time, people relied almost exclusively on herd animals of sheep, goat, cattle, and horses for sustenance and as symbols. Mobile pastoralism also generated altogether new forms of socio-political organization exceptional to the steppe that ultimately laid the foundation for nomadic states and empires. However, there remain striking gaps in our knowledge of how the pastoralist niche spread and evolved across Eurasia in the past and influenced cultural trajectories that frame the human-herd systems of today. Little is known about the scale of pastoralist movements connected with the initial translocation of domesticated animals, how mobility became embedded in pastoralist life, or how movement contributed to the formation of sophisticated political networks. There is a poor understanding of the character of herd animal husbandry strategies that were central to pastoralist subsistence and how these co-evolved alongside pastoralist dietary intake and ritual use of herd animals. We have a remarkably poor understanding of what pastoralists ate, especially the dietary contribution of dairy products - the quintessential dietary cornerstone food of pastoralist societies.
ASIAPAST addresses these gaps through a biomolecular approach that recovers the dietary and mobility histories of pastoralists and their animals recorded in bones, teeth, and pottery. This project pairs these methods to detailed analyses of the economic and symbolic use of herd animals preserved in zooarchaeological archives. These investigations draw from materials obtained from key sites that capture the transition to mobile pastoralism, its intensification, and emergence of trans-regional political structures located across the culturally connected regions of Mongolia, Kazakhstan, Russia, Kyrgyzstan, and Uzbekistan.
Summary
The emergence of mobile pastoralism in the Eurasian steppe five thousand years ago marked a unique transformation in human lifeways where, for the first time, people relied almost exclusively on herd animals of sheep, goat, cattle, and horses for sustenance and as symbols. Mobile pastoralism also generated altogether new forms of socio-political organization exceptional to the steppe that ultimately laid the foundation for nomadic states and empires. However, there remain striking gaps in our knowledge of how the pastoralist niche spread and evolved across Eurasia in the past and influenced cultural trajectories that frame the human-herd systems of today. Little is known about the scale of pastoralist movements connected with the initial translocation of domesticated animals, how mobility became embedded in pastoralist life, or how movement contributed to the formation of sophisticated political networks. There is a poor understanding of the character of herd animal husbandry strategies that were central to pastoralist subsistence and how these co-evolved alongside pastoralist dietary intake and ritual use of herd animals. We have a remarkably poor understanding of what pastoralists ate, especially the dietary contribution of dairy products - the quintessential dietary cornerstone food of pastoralist societies.
ASIAPAST addresses these gaps through a biomolecular approach that recovers the dietary and mobility histories of pastoralists and their animals recorded in bones, teeth, and pottery. This project pairs these methods to detailed analyses of the economic and symbolic use of herd animals preserved in zooarchaeological archives. These investigations draw from materials obtained from key sites that capture the transition to mobile pastoralism, its intensification, and emergence of trans-regional political structures located across the culturally connected regions of Mongolia, Kazakhstan, Russia, Kyrgyzstan, and Uzbekistan.
Max ERC Funding
1 999 145 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ASSESS
Project Episodic Mass Loss in the Most Massive Stars: Key to Understanding the Explosive Early Universe
Researcher (PI) Alceste BONANOS
Host Institution (HI) ETHNIKO ASTEROSKOPEIO ATHINON
Country Greece
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary Massive stars dominate their surroundings during their short lifetimes, while their explosive deaths impact the chemical evolution and spatial cohesion of their hosts. After birth, their evolution is largely dictated by their ability to remove layers of hydrogen from their envelopes. Multiple lines of evidence are pointing to violent, episodic mass-loss events being responsible for removing a large part of the massive stellar envelope, especially in low-metallicity galaxies. Episodic mass loss, however, is not understood theoretically, neither accounted for in state-of-the-art models of stellar evolution, which has far-reaching consequences for many areas of astronomy. We aim to determine whether episodic mass loss is a dominant process in the evolution of the most massive stars by conducting the first extensive, multi-wavelength survey of evolved massive stars in the nearby Universe. The project hinges on the fact that mass-losing stars form dust and are bright in the mid-infrared. We plan to (i) derive physical parameters of a large sample of dusty, evolved targets and estimate the amount of ejected mass, (ii) constrain evolutionary models, (iii) quantify the duration and frequency of episodic mass loss as a function of metallicity. The approach involves applying machine-learning algorithms to existing multi-band and time-series photometry of luminous sources in ~25 nearby galaxies. Dusty, luminous evolved massive stars will thus be automatically classified and follow-up spectroscopy will be obtained for selected targets. Atmospheric and SED modeling will yield parameters and estimates of time-dependent mass loss for ~1000 luminous stars. The emerging trend for the ubiquity of episodic mass loss, if confirmed, will be key to understanding the explosive early Universe and will have profound consequences for low-metallicity stars, reionization, and the chemical evolution of galaxies.
Summary
Massive stars dominate their surroundings during their short lifetimes, while their explosive deaths impact the chemical evolution and spatial cohesion of their hosts. After birth, their evolution is largely dictated by their ability to remove layers of hydrogen from their envelopes. Multiple lines of evidence are pointing to violent, episodic mass-loss events being responsible for removing a large part of the massive stellar envelope, especially in low-metallicity galaxies. Episodic mass loss, however, is not understood theoretically, neither accounted for in state-of-the-art models of stellar evolution, which has far-reaching consequences for many areas of astronomy. We aim to determine whether episodic mass loss is a dominant process in the evolution of the most massive stars by conducting the first extensive, multi-wavelength survey of evolved massive stars in the nearby Universe. The project hinges on the fact that mass-losing stars form dust and are bright in the mid-infrared. We plan to (i) derive physical parameters of a large sample of dusty, evolved targets and estimate the amount of ejected mass, (ii) constrain evolutionary models, (iii) quantify the duration and frequency of episodic mass loss as a function of metallicity. The approach involves applying machine-learning algorithms to existing multi-band and time-series photometry of luminous sources in ~25 nearby galaxies. Dusty, luminous evolved massive stars will thus be automatically classified and follow-up spectroscopy will be obtained for selected targets. Atmospheric and SED modeling will yield parameters and estimates of time-dependent mass loss for ~1000 luminous stars. The emerging trend for the ubiquity of episodic mass loss, if confirmed, will be key to understanding the explosive early Universe and will have profound consequences for low-metallicity stars, reionization, and the chemical evolution of galaxies.
Max ERC Funding
1 128 750 €
Duration
Start date: 2018-09-01, End date: 2023-08-31