Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym 4DBIOSERS
Project Four-Dimensional Monitoring of Tumour Growth by Surface Enhanced Raman Scattering
Researcher (PI) Luis LIZ-MARZAN
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Country Spain
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Summary
Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Max ERC Funding
2 410 771 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AARTFAAC
Project Amsterdam-ASTRON Radio Transient Facility And Analysis Centre: Probing the Extremes of Astrophysics
Researcher (PI) Ralph Antoine Marie Joseph Wijers
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Country Netherlands
Call Details Advanced Grant (AdG), PE9, ERC-2009-AdG
Summary Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Summary
Some of the most extreme tests of physical law come from its manifestations in the behaviour of black holes and neutron stars, and as such these objects should be used as fundamental physics labs. Due to advances in both theoretical work and observational techniques, I have a major opportunity now to significantly push this agenda forward and get better answers to questions like: How are black holes born? How can energy be extracted from black holes? What is the origin of magnetic fields and cosmic rays in jets and shocks? Is their primary energy stream hadronic or magnetic? I propose to do this by exploiting the advent of wide-field radio astronomy: extreme objects are very rare and usually transient, so not only must one survey large areas of sky, but also must one do this often. I propose to form and shape a group that will use the LOFAR wide-field radio telescope to hunt for these extreme transients and systematically collect enough well-documented examples of the behaviour of each type of transient. Furthermore, I propose to expand LOFAR with a true 24/7 all-sky monitor to catch and study even the rarest of events. Next, I will use my experience in gamma-ray burst followup to conduct a vigorous multi-wavelength programme of study of these objects, to constrain their physics from as many angles as possible. This will eventually include results from multi-messenger astrophysics, in which we use neutrinos, gravity waves, and other non-electromagnetic messengers as extra diagnostics of the physics of these sources. Finally, I will build on my experience in modelling accretion phenomena and relativistic explosions to develop a theoretical framework for these phenomena and constrain the resulting models with the rich data sets we obtain.
Max ERC Funding
3 499 128 €
Duration
Start date: 2010-10-01, End date: 2016-09-30
Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2024-05-31
Project acronym ACCOPT
Project ACelerated COnvex OPTimization
Researcher (PI) Yurii NESTEROV
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Country Belgium
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations.
The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure.
Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.
Summary
The amazing rate of progress in the computer technologies and telecommunications presents many new challenges for Optimization Theory. New problems are usually very big in size, very special in structure and possibly have a distributed data support. This makes them unsolvable by the standard optimization methods. In these situations, old theoretical models, based on the hidden Black-Box information, cannot work. New theoretical and algorithmic solutions are urgently needed. In this project we will concentrate on development of fast optimization methods for problems of big and very big size. All the new methods will be endowed with provable efficiency guarantees for large classes of optimization problems, arising in practical applications. Our main tool is the acceleration technique developed for the standard Black-Box methods as applied to smooth convex functions. However, we will have to adapt it to deal with different situations.
The first line of development will be based on the smoothing technique as applied to a non-smooth functions. We propose to substantially extend this approach to generate approximate solutions in relative scale. The second line of research will be related to applying acceleration techniques to the second-order methods minimizing functions with sparse Hessians. Finally, we aim to develop fast gradient methods for huge-scale problems. The size of these problems is so big that even the usual vector operations are extremely expensive. Thus, we propose to develop new methods with sublinear iteration costs. In our approach, the main source for achieving improvements will be the proper use of problem structure.
Our overall aim is to be able to solve in a routine way many important problems, which currently look unsolvable. Moreover, the theoretical development of Convex Optimization will reach the state, when there is no gap between theory and practice: the theoretically most efficient methods will definitely outperform any homebred heuristics.
Max ERC Funding
2 090 038 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ACCUPOL
Project Unlimited Growth? A Comparative Analysis of Causes and Consequences of Policy Accumulation
Researcher (PI) Christoph KNILL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), SH2, ERC-2017-ADG
Summary ACCUPOL systematically analyzes an intuitively well-known, but curiously under-researched phenomenon: policy accumulation. Societal modernization and progress bring about a continuously growing pile of policies in most political systems. At the same time, however, the administrative capacities for implementation are largely stagnant. While being societally desirable in principle, ever-more policies hence may potentially imply less in terms of policy achievements. Whether or not policy accumulation remains at a ‘sustainable’ rate thus crucially affects the long-term output legitimacy of modern democracies.
Given this development, the central focus of ACCUPOL lies on three questions: Do accumulation rates vary across countries and policy sectors? Which factors mitigate policy accumulation? And to what extent is policy accumulation really associated with an increasing prevalence of implementation deficits? In answering these questions, ACCUPOL radically departs from established research traditions in public policy.
First, the project develops new analytical concepts: Rather than relying on individual policy change as the unit of analysis, we consider policy accumulation to assess the growth of policy portfolios over time. In terms of implementation, ACCUPOL takes into account the overall prevalence of implementation deficits in a given sector instead of analyzing the effectiveness of individual implementation processes.
Second, this analytical innovation also implies a paradigmatic theoretical shift. Because existing theories focus on the analysis of individual policies, they are of limited help to understand causes and consequences of policy accumulation. ACCUPOL develops a novel theoretical approach to fill this theoretical gap.
Third, the project provides new empirical evidence on the prevalence of policy accumulation and implementation deficits focusing on 25 OECD countries and two key policy areas (social and environmental policy).
Summary
ACCUPOL systematically analyzes an intuitively well-known, but curiously under-researched phenomenon: policy accumulation. Societal modernization and progress bring about a continuously growing pile of policies in most political systems. At the same time, however, the administrative capacities for implementation are largely stagnant. While being societally desirable in principle, ever-more policies hence may potentially imply less in terms of policy achievements. Whether or not policy accumulation remains at a ‘sustainable’ rate thus crucially affects the long-term output legitimacy of modern democracies.
Given this development, the central focus of ACCUPOL lies on three questions: Do accumulation rates vary across countries and policy sectors? Which factors mitigate policy accumulation? And to what extent is policy accumulation really associated with an increasing prevalence of implementation deficits? In answering these questions, ACCUPOL radically departs from established research traditions in public policy.
First, the project develops new analytical concepts: Rather than relying on individual policy change as the unit of analysis, we consider policy accumulation to assess the growth of policy portfolios over time. In terms of implementation, ACCUPOL takes into account the overall prevalence of implementation deficits in a given sector instead of analyzing the effectiveness of individual implementation processes.
Second, this analytical innovation also implies a paradigmatic theoretical shift. Because existing theories focus on the analysis of individual policies, they are of limited help to understand causes and consequences of policy accumulation. ACCUPOL develops a novel theoretical approach to fill this theoretical gap.
Third, the project provides new empirical evidence on the prevalence of policy accumulation and implementation deficits focusing on 25 OECD countries and two key policy areas (social and environmental policy).
Max ERC Funding
2 359 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Country United Kingdom
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AIR-NB
Project Pre-natal exposure to urban AIR pollution and pre- and post-Natal Brain development
Researcher (PI) Jordi Sunyer
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Summary
Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Max ERC Funding
2 499 992 €
Duration
Start date: 2018-09-01, End date: 2023-08-31