Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 3SPIN
Project Three Dimensional Spintronics
Researcher (PI) Russell Paul Cowburn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Summary
Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Max ERC Funding
2 799 996 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Country Spain
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym ADAPTIVES
Project Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES
Researcher (PI) Chrysoula Tsogka
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Country Greece
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Summary
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Max ERC Funding
690 000 €
Duration
Start date: 2010-06-01, End date: 2015-11-30
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Country France
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym AFRICA-GHG
Project AFRICA-GHG: The role of African tropical forests on the Greenhouse Gases balance of the atmosphere
Researcher (PI) Riccardo Valentini
Host Institution (HI) FONDAZIONE CENTRO EURO-MEDITERRANEOSUI CAMBIAMENTI CLIMATICI
Country Italy
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Summary
The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Max ERC Funding
2 406 950 €
Duration
Start date: 2010-04-01, End date: 2014-12-31
Project acronym AFRIVAL
Project African river basins: catchment-scale carbon fluxes and transformations
Researcher (PI) Steven Bouillon
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Summary
This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Max ERC Funding
1 745 262 €
Duration
Start date: 2009-10-01, End date: 2014-09-30