Project acronym 2-3-AUT
Project Surfaces, 3-manifolds and automorphism groups
Researcher (PI) Nathalie Wahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Country Denmark
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Summary
The scientific goal of the proposal is to answer central questions related to diffeomorphism groups of manifolds of dimension 2 and 3, and to their deformation invariant analogs, the mapping class groups. While the classification of surfaces has been known for more than a century, their automorphism groups have yet to be fully understood. Even less is known about diffeomorphisms of 3-manifolds despite much interest, and the objects here have only been classified recently, by the breakthrough work of Perelman on the Poincar\'e and geometrization conjectures. In dimension 2, I will focus on the relationship between mapping class groups and topological conformal field theories, with applications to Hochschild homology. In dimension 3, I propose to compute the stable homology of classifying spaces of diffeomorphism groups and mapping class groups, as well as study the homotopy type of the space of diffeomorphisms. I propose moreover to establish homological stability theorems in the wider context of automorphism groups and more general families of groups. The project combines breakthrough methods from homotopy theory with methods from differential and geometric topology. The research team will consist of 3 PhD students, and 4 postdocs, which I will lead.
Max ERC Funding
724 992 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym 3SPIN
Project Three Dimensional Spintronics
Researcher (PI) Russell Paul Cowburn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Summary
Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Max ERC Funding
2 799 996 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym 4D IMAGING
Project Towards 4D Imaging of Fundamental Processes on the Atomic and Sub-Atomic Scale
Researcher (PI) Ferenc Krausz
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Summary
State-of-the-art microscopy and diffraction imaging provides insight into the atomic and sub-atomic structure of matter. They permit determination of the positions of atoms in a crystal lattice or in a molecule as well as the distribution of electrons inside atoms. State-of-the-art time-resolved spectroscopy with femtosecond and attosecond resolution provides access to dynamic changes in the atomic and electronic structure of matter. Our proposal aims at combining these two frontier techniques of XXI century science to make a long-standing dream of scientist come true: the direct observation of atoms and electrons in their natural state: in motion. Shifts in the atoms positions by tens to hundreds of picometers can make chemical bonds break apart or newly form, changing the structure and/or chemical composition of matter. Electronic motion on similar scales may result in the emission of light, or the initiation of processes that lead to a change in physical or chemical properties, or biological function. These motions happen within femtoseconds and attoseconds, respectively. To make them observable, we need a 4-dimensional (4D) imaging technique capable of recording freeze-frame snapshots of microscopic systems with picometer spatial resolution and femtosecond to attosecond exposure time. The motion can then be visualized by slow-motion replay of the freeze-frame shots. The goal of this project is to develop a 4D imaging technique that will ultimately offer picometer resolution is space and attosecond resolution in time.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym ADAPTIVES
Project Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES
Researcher (PI) Chrysoula Tsogka
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Country Greece
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Summary
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.
Max ERC Funding
690 000 €
Duration
Start date: 2010-06-01, End date: 2015-11-30
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Country France
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym AFRICA-GHG
Project AFRICA-GHG: The role of African tropical forests on the Greenhouse Gases balance of the atmosphere
Researcher (PI) Riccardo Valentini
Host Institution (HI) FONDAZIONE CENTRO EURO-MEDITERRANEOSUI CAMBIAMENTI CLIMATICI
Country Italy
Call Details Advanced Grant (AdG), PE10, ERC-2009-AdG
Summary The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Summary
The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Max ERC Funding
2 406 950 €
Duration
Start date: 2010-04-01, End date: 2014-12-31
Project acronym AFRIVAL
Project African river basins: catchment-scale carbon fluxes and transformations
Researcher (PI) Steven Bouillon
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Summary
This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Max ERC Funding
1 745 262 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym AIM2 INFLAMMASOME
Project Cytosolic recognition of foreign nucleic acids: Molecular and functional characterization of AIM2, a central player in DNA-triggered inflammasome activation
Researcher (PI) Veit Hornung
Host Institution (HI) UNIVERSITATSKLINIKUM BONN
Country Germany
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Summary
Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Max ERC Funding
1 727 920 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ALIGN
Project Ab-initio computational modelling of photovoltaic interfaces
Researcher (PI) Feliciano Giustino
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Summary
The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym ANSR
Project Ab initio approach to nuclear structure and reactions (++)
Researcher (PI) Christian Erik Forssen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Summary
Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Max ERC Funding
1 304 800 €
Duration
Start date: 2009-12-01, End date: 2014-11-30