Project acronym 1D-Engine
Project 1D-electrons coupled to dissipation: a novel approach for understanding and engineering superconducting materials and devices
Researcher (PI) Adrian KANTIAN
Host Institution (HI) HERIOT-WATT UNIVERSITY
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Summary
Correlated electrons are at the forefront of condensed matter theory. Interacting quasi-1D electrons have seen vast progress in analytical and numerical theory, and thus in fundamental understanding and quantitative prediction. Yet, in the 1D limit fluctuations preclude important technological use, particularly of superconductors. In contrast, high-Tc superconductors in 2D/3D are not precluded by fluctuations, but lack a fundamental theory, making prediction and engineering of their properties, a major goal in physics, very difficult. This project aims to combine the advantages of both areas by making major progress in the theory of quasi-1D electrons coupled to an electron bath, in part building on recent breakthroughs (with the PIs extensive involvement) in simulating 1D and 2D electrons with parallelized density matrix renormalization group (pDMRG) numerics. Such theory will fundamentally advance the study of open electron systems, and show how to use 1D materials as elements of new superconducting (SC) devices and materials: 1) It will enable a new state of matter, 1D electrons with true SC order. Fluctuations from the electronic liquid, such as graphene, could also enable nanoscale wires to appear SC at high temperatures. 2) A new approach for the deliberate engineering of a high-Tc superconductor. In 1D, how electrons pair by repulsive interactions is understood and can be predicted. Stabilization by reservoir - formed by a parallel array of many such 1D systems - offers a superconductor for which all factors setting Tc are known and can be optimized. 3) Many existing superconductors with repulsive electron pairing, all presently not understood, can be cast as 1D electrons coupled to a bath. Developing chain-DMFT theory based on pDMRG will allow these materials SC properties to be simulated and understood for the first time. 4) The insights gained will be translated to 2D superconductors to study how they could be enhanced by contact with electronic liquids.
Max ERC Funding
1 491 013 €
Duration
Start date: 2018-10-01, End date: 2024-03-31
Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Country United Kingdom
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 3DMOSHBOND
Project Three-Dimensional Mapping Of a Single Hydrogen Bond
Researcher (PI) Adam Marc SWEETMAN
Host Institution (HI) UNIVERSITY OF LEEDS
Country United Kingdom
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Summary
All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Max ERC Funding
1 971 468 €
Duration
Start date: 2018-01-01, End date: 2023-12-31
Project acronym 4DBIOSERS
Project Four-Dimensional Monitoring of Tumour Growth by Surface Enhanced Raman Scattering
Researcher (PI) Luis LIZ-MARZAN
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Country Spain
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Summary
Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Max ERC Funding
2 410 771 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym 4DRepLy
Project Closing the 4D Real World Reconstruction Loop
Researcher (PI) Christian THEOBALT
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Country Germany
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary 4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Summary
4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Max ERC Funding
1 977 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ABIOS
Project ABIOtic Synthesis of RNA: an investigation on how life started before biology existed
Researcher (PI) Guillaume STIRNEMANN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Summary
The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Max ERC Funding
1 497 031 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ACROSS
Project Australasian Colonization Research: Origins of Seafaring to Sahul
Researcher (PI) Rosemary Helen FARR
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Country United Kingdom
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Summary
One of the most exciting research questions within archaeology is that of the peopling of Australasia by at least c.50,000 years ago. This represents some of the earliest evidence of modern human colonization outside Africa, yet, even at the greatest sea-level lowstand, this migration would have involved seafaring. It is the maritime nature of this dispersal which makes it so important to questions of technological, cognitive and social human development. These issues have traditionally been the preserve of archaeologists, but with a multidisciplinary approach that embraces cutting-edge marine geophysical, hydrodynamic and archaeogenetic analyses, we now have the opportunity to examine the When, Where, Who and How of the earliest seafaring in world history.
The voyage from Sunda (South East Asia) to Sahul (Australasia) provides evidence for the earliest ‘open water’ crossing in the world. A combination of the sparse number of early archaeological finds and the significant changes in the palaeolandscape and submergence of the broad north western Australian continental shelf, mean that little is known about the routes taken and what these crossings may have entailed.
This project will combine research of the submerged palaeolandscape of the continental shelf to refine our knowledge of the onshore/offshore environment, identify potential submerged prehistoric sites and enhance our understanding of the palaeoshoreline and tidal regime. This will be combined with archaeogenetic research targeting mtDNA and Y-chromosome data to resolve questions of demography and dating.
For the first time this project takes a truly multidisciplinary approach to address the colonization of Sahul, providing an unique opportunity to tackle some of the most important questions about human origins, the relationship between humans and the changing environment, population dynamics and migration, seafaring technology, social organisation and cognition.
Max ERC Funding
1 134 928 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Country Ireland
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym ADMIRE
Project Atomic-scale Design of Majorana states and their Innovative Real-space Exploration
Researcher (PI) Roland WIESENDANGER
Host Institution (HI) UNIVERSITAET HAMBURG
Country Germany
Call Details Advanced Grant (AdG), PE3, ERC-2017-ADG
Summary Fault-tolerant topological quantum computation has become one of the most exciting research directions in modern condensed matter physics. As a key operation the braiding of non-Abelian anyons has been proposed theoretically. Such exotic quasiparticles can be realized as zero-energy Majorana bound states at the ends of one-dimensional magnetic nanowires in proximity to s-wave superconductors in the presence of high spin-orbit coupling. In contrast to previous attempts to realize such systems experimentally, based on the growth of semiconducting nanowires or the self-assembly of ferromagnetic nanowires on s-wave superconductors, we propose to design Majorana bound states in artificially constructed single-atom chains with non-collinear spin-textures on elemental superconducting substrates using scanning tunnelling microscope (STM)-based atom manipulation techniques. We would like to study at the atomic level the formation of Shiba bands as a result of hybridization of individual Shiba impurity states as well as the emergence of zero-energy Majorana bound states as a function of chain structure, length, and composition. Moreover, we will construct model-type platforms, such as T-junctions, rings, and more complex network structures with atomic-scale precision as a basis for demonstrating the manipulation and braiding of Majorana bound states. We will make use of sophisticated experimental techniques, such as spin-resolved scanning tunnelling spectroscopy (STS) at micro-eV energy resolution, scanning Josephson tunnelling spectroscopy, and multi-probe STS under well-defined ultra-high vacuum conditions, in order to directly probe the nature of the magnetic state of the atomic wires, the spin-polarization of the emergent Majorana states, as well as the spatial nature of the superconducting order parameter in real space. Finally, we will try to directly probe the quantum exchange statistics of non-Abelian anyons in these atomically precise fabricated model-type systems.
Summary
Fault-tolerant topological quantum computation has become one of the most exciting research directions in modern condensed matter physics. As a key operation the braiding of non-Abelian anyons has been proposed theoretically. Such exotic quasiparticles can be realized as zero-energy Majorana bound states at the ends of one-dimensional magnetic nanowires in proximity to s-wave superconductors in the presence of high spin-orbit coupling. In contrast to previous attempts to realize such systems experimentally, based on the growth of semiconducting nanowires or the self-assembly of ferromagnetic nanowires on s-wave superconductors, we propose to design Majorana bound states in artificially constructed single-atom chains with non-collinear spin-textures on elemental superconducting substrates using scanning tunnelling microscope (STM)-based atom manipulation techniques. We would like to study at the atomic level the formation of Shiba bands as a result of hybridization of individual Shiba impurity states as well as the emergence of zero-energy Majorana bound states as a function of chain structure, length, and composition. Moreover, we will construct model-type platforms, such as T-junctions, rings, and more complex network structures with atomic-scale precision as a basis for demonstrating the manipulation and braiding of Majorana bound states. We will make use of sophisticated experimental techniques, such as spin-resolved scanning tunnelling spectroscopy (STS) at micro-eV energy resolution, scanning Josephson tunnelling spectroscopy, and multi-probe STS under well-defined ultra-high vacuum conditions, in order to directly probe the nature of the magnetic state of the atomic wires, the spin-polarization of the emergent Majorana states, as well as the spatial nature of the superconducting order parameter in real space. Finally, we will try to directly probe the quantum exchange statistics of non-Abelian anyons in these atomically precise fabricated model-type systems.
Max ERC Funding
2 499 750 €
Duration
Start date: 2019-01-01, End date: 2023-12-31