Project acronym ADDECCO
Project Adaptive Schemes for Deterministic and Stochastic Flow Problems
Researcher (PI) Remi Abgrall
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Summary
The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Max ERC Funding
1 432 769 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym ALK7
Project Metabolic control by the TGF-² superfamily receptor ALK7: A novel regulator of insulin secretion, fat accumulation and energy balance
Researcher (PI) Carlos Ibanez
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary The aim of this proposal is to understand a novel regulatory signaling network controlling insulin secretion, fat accumulation and energy balance centered around selected components of the TGF-² signaling system, including Activins A and B, GDF-3 and their receptors ALK7 and ALK4. Recent results from my laboratory indicate that these molecules are part of paracrine signaling networks that control important functions in pancreatic islets and adipose tissue through feedback inhibition and feed-forward regulation. These discoveries have open up a new research area with important implications for the understanding of metabolic networks and the treatment of human metabolic syndromes, such as diabetes and obesity.
To drive progress in this new research area beyond the state-of-the-art it is proposed to: i) Elucidate the molecular mechanisms by which Activins regulate Ca2+ influx and insulin secretion in pancreatic ²-cells; ii) Elucidate the molecular mechanisms underlying the effects of GDF-3 on adipocyte metabolism, turnover and fat accumulation; iii) Investigate the interplay between insulin levels and fat deposition in the development of insulin resistance using mutant mice lacking Activin B and GDF-3; iv) Investigate tissue-specific contributions of ALK7 and ALK4 signaling to metabolic control by generating and characterizing conditional mutant mice; v) Investigate the effects of specific and reversible inactivation of ALK7 and ALK4 on metabolic regulation using a novel chemical-genetic approach based on analog-sensitive alleles.
This is research of a high-gain/high-risk nature. It is posed to open unique opportunities for further exploration of complex metabolic networks. The development of drugs capable of enhancing insulin secretion, limiting fat accumulation and ameliorating diet-induced obesity by targeting components of the ALK7 signaling network will find a strong rationale in the results of the proposed work.
Summary
The aim of this proposal is to understand a novel regulatory signaling network controlling insulin secretion, fat accumulation and energy balance centered around selected components of the TGF-² signaling system, including Activins A and B, GDF-3 and their receptors ALK7 and ALK4. Recent results from my laboratory indicate that these molecules are part of paracrine signaling networks that control important functions in pancreatic islets and adipose tissue through feedback inhibition and feed-forward regulation. These discoveries have open up a new research area with important implications for the understanding of metabolic networks and the treatment of human metabolic syndromes, such as diabetes and obesity.
To drive progress in this new research area beyond the state-of-the-art it is proposed to: i) Elucidate the molecular mechanisms by which Activins regulate Ca2+ influx and insulin secretion in pancreatic ²-cells; ii) Elucidate the molecular mechanisms underlying the effects of GDF-3 on adipocyte metabolism, turnover and fat accumulation; iii) Investigate the interplay between insulin levels and fat deposition in the development of insulin resistance using mutant mice lacking Activin B and GDF-3; iv) Investigate tissue-specific contributions of ALK7 and ALK4 signaling to metabolic control by generating and characterizing conditional mutant mice; v) Investigate the effects of specific and reversible inactivation of ALK7 and ALK4 on metabolic regulation using a novel chemical-genetic approach based on analog-sensitive alleles.
This is research of a high-gain/high-risk nature. It is posed to open unique opportunities for further exploration of complex metabolic networks. The development of drugs capable of enhancing insulin secretion, limiting fat accumulation and ameliorating diet-induced obesity by targeting components of the ALK7 signaling network will find a strong rationale in the results of the proposed work.
Max ERC Funding
2 462 154 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym ALREG
Project Analysing Learning in Regulatory Governance
Researcher (PI) Claudio Radaelli
Host Institution (HI) THE UNIVERSITY OF EXETER
Call Details Advanced Grant (AdG), SH2, ERC-2008-AdG
Summary This four-year interdisciplinary project addresses the question what has been learned through the use of better regulation ? Better regulation is a flagship policy on the Lisbon agenda for growth and jobs. Its aims are to provide new governance architectures for law-making, to increase the competitiveness of the regulatory environment, and to secure wide social legitimacy for multi-level systems of rules. Whilst most of the research has looked at how better regulation is changing, this project will produce findings on what has changed because of better regulation. Theoretically, the project will use (and significantly improve on) theories of policy learning. Empirically, it will cover Denmark, Italy, the Netherlands, Poland, the UK and the EU including multi-level analysis and analysis by sector of regulation. Methodologically, the project will draw on comparative analysis of types of learning, experiments with regulatory policy-makers in six countries and the European Commission, large-n analysis of impact assessments, backward-mapping of legislation (to appraise the role played by better regulation in the formulation or laws in the UK and the EU), meta-analysis of case-studies and co-production of knowledge with better regulation officers. Dissemination will target both stakeholders (i.e., policy officers, civil society organizations, and business federations) and academic conferences in political science, law, and risk analysis, with a major research monograph to be completed in year 4 and a final interdisciplinary conference.
Summary
This four-year interdisciplinary project addresses the question what has been learned through the use of better regulation ? Better regulation is a flagship policy on the Lisbon agenda for growth and jobs. Its aims are to provide new governance architectures for law-making, to increase the competitiveness of the regulatory environment, and to secure wide social legitimacy for multi-level systems of rules. Whilst most of the research has looked at how better regulation is changing, this project will produce findings on what has changed because of better regulation. Theoretically, the project will use (and significantly improve on) theories of policy learning. Empirically, it will cover Denmark, Italy, the Netherlands, Poland, the UK and the EU including multi-level analysis and analysis by sector of regulation. Methodologically, the project will draw on comparative analysis of types of learning, experiments with regulatory policy-makers in six countries and the European Commission, large-n analysis of impact assessments, backward-mapping of legislation (to appraise the role played by better regulation in the formulation or laws in the UK and the EU), meta-analysis of case-studies and co-production of knowledge with better regulation officers. Dissemination will target both stakeholders (i.e., policy officers, civil society organizations, and business federations) and academic conferences in political science, law, and risk analysis, with a major research monograph to be completed in year 4 and a final interdisciplinary conference.
Max ERC Funding
948 448 €
Duration
Start date: 2009-09-01, End date: 2013-09-30
Project acronym AMIMOS
Project Agile MIMO Systems for Communications, Biomedicine, and Defense
Researcher (PI) Bjorn Ottersten
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE7, ERC-2008-AdG
Summary This proposal targets the emerging frontier research field of multiple-input multiple-output (MIMO) systems along with several innovative and somewhat unconventional applications of such systems. The use of arrays of transmitters and receivers will have a profound impact on future medical imaging/therapy systems, radar systems, and radio communication networks. Multiple transmitters provide a tremendous versatility and allow waveforms to be adapted temporally and spatially to environmental conditions. This is useful for individually tailored illumination of human tissue in biomedical imaging or ultrasound therapy. In radar systems, multiple transmit beams can be formed simultaneously via separate waveform designs allowing accurate target classification. In a wireless communication system, multiple communication signals can be directed to one or more users at the same time on the same frequency carrier. In addition, multiple receivers can be used in the above applications to provide increased detection performance, interference rejection, and improved estimation accuracy. The joint modelling, analysis, and design of these multidimensional transmit and receive schemes form the core of this research proposal. Ultimately, our research aims at developing the fundamental tools that will allow the design of wireless communication systems with an order-of-magnitude higher capacity at a lower cost than today; of ultrasound therapy systems maximizing delivered power while reducing treatment duration and unwanted illumination; and of distributed aperture multi-beam radars allowing more effective target location, identification, and classification. Europe has several successful industries that are active in biomedical imaging/therapy, radar systems, and wireless communications. The future success of these sectors critically depends on the ability to innovate and integrate new technology.
Summary
This proposal targets the emerging frontier research field of multiple-input multiple-output (MIMO) systems along with several innovative and somewhat unconventional applications of such systems. The use of arrays of transmitters and receivers will have a profound impact on future medical imaging/therapy systems, radar systems, and radio communication networks. Multiple transmitters provide a tremendous versatility and allow waveforms to be adapted temporally and spatially to environmental conditions. This is useful for individually tailored illumination of human tissue in biomedical imaging or ultrasound therapy. In radar systems, multiple transmit beams can be formed simultaneously via separate waveform designs allowing accurate target classification. In a wireless communication system, multiple communication signals can be directed to one or more users at the same time on the same frequency carrier. In addition, multiple receivers can be used in the above applications to provide increased detection performance, interference rejection, and improved estimation accuracy. The joint modelling, analysis, and design of these multidimensional transmit and receive schemes form the core of this research proposal. Ultimately, our research aims at developing the fundamental tools that will allow the design of wireless communication systems with an order-of-magnitude higher capacity at a lower cost than today; of ultrasound therapy systems maximizing delivered power while reducing treatment duration and unwanted illumination; and of distributed aperture multi-beam radars allowing more effective target location, identification, and classification. Europe has several successful industries that are active in biomedical imaging/therapy, radar systems, and wireless communications. The future success of these sectors critically depends on the ability to innovate and integrate new technology.
Max ERC Funding
1 872 720 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym AMSTAT
Project Problems at the Applied Mathematics-Statistics Interface
Researcher (PI) Andrew Stuart
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Summary
Applied mathematics is concerned with developing models with predictive capability, and with probing those models to obtain qualitative and quantitative insight into the phenomena being modelled. Statistics is data-driven and is aimed at the development of methodologies to optimize the information derived from data. The increasing complexity of phenomena that scientists and engineers wish to model, together with our increased ability to gather, store and interrogate data, mean that the subjects of applied mathematics and statistics are increasingly required to work in conjunction. This research proposal is concerned with a research program at the interface between these two disciplines, aimed at problems in differential equations where profusion of data and the sophisticated model combine to produce the mathematical problem of obtaining information from a probability measure on function space. Applications are far-reaching and include the atmospheric sciences, geophysics, chemistry, econometrics and signal processing. The objectives of the research are: (i) to create the systematic foundations for a range of problems at the applied mathematics and statistics interface which share the common mathematical structure underpinning the range of applications described above; (ii) to exploit this common mathematical structure to design effecient algorithms to sample probability measures on function space; (iii) to apply these algorithms to attack a range of significant problems arising in molecular dynamics and in the atmospheric sciences.
Max ERC Funding
1 693 501 €
Duration
Start date: 2008-12-01, End date: 2014-11-30
Project acronym ANGIOMIRS
Project microRNAs in vascular homeostasis
Researcher (PI) Stefanie Dimmeler
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Despite improved therapy, cardiovascular diseases remain the most prevalent diseases in the European Union and the incidence is rising due to increased obesity and ageing. The fine-tuned regulation of vascular functions is essential not only for preventing atherosclerotic diseases, but also after tissue injury, where the coordinated growth and maturation of new blood vessels provides oxygen and nutrient supply. On the other hand, excessive vessel growth or the generation of immature, leaky vessels contributes to pathological angiogenesis. Thus, the regulation of the complex processes governing vessel growth and maturation has broad impacts for several diseases ranging from tumor angiogenesis, diabetic retinopathy, to ischemic cardiovascular diseases. MicroRNAs (miRs) are small noncoding RNAs, which play a crucial role in embryonic development and tissue homeostasis. However, only limited information is available regarding the role of miRs in the vasculature. MiRs regulate gene expression by binding to the target mRNA leading either to degradation or to translational repression. Because miRs control patterns of target genes, miRs represent an attractive and promising therapeutic target to interfere with complex processes such as neovascularization and repair of ischemic tissues. Therefore, the present application aims to identify miRs in the vasculature, which regulate vessel growth and vessel remodelling and may, thus, serve as therapeutic targets in ischemic diseases. Since ageing critically impairs endothelial function, neovascularization and vascular repair, we will specifically identify miRs, which are dysregulated during ageing in endothelial cells and pro-angiogenic progenitor cells, in order to develop novel strategies to rescue age-induced impairment of neovascularization. Beyond the specific scope of the present application, the principle findings may have impact for other diseases, where deregulated vessel growth causes or accelerates disease states.
Summary
Despite improved therapy, cardiovascular diseases remain the most prevalent diseases in the European Union and the incidence is rising due to increased obesity and ageing. The fine-tuned regulation of vascular functions is essential not only for preventing atherosclerotic diseases, but also after tissue injury, where the coordinated growth and maturation of new blood vessels provides oxygen and nutrient supply. On the other hand, excessive vessel growth or the generation of immature, leaky vessels contributes to pathological angiogenesis. Thus, the regulation of the complex processes governing vessel growth and maturation has broad impacts for several diseases ranging from tumor angiogenesis, diabetic retinopathy, to ischemic cardiovascular diseases. MicroRNAs (miRs) are small noncoding RNAs, which play a crucial role in embryonic development and tissue homeostasis. However, only limited information is available regarding the role of miRs in the vasculature. MiRs regulate gene expression by binding to the target mRNA leading either to degradation or to translational repression. Because miRs control patterns of target genes, miRs represent an attractive and promising therapeutic target to interfere with complex processes such as neovascularization and repair of ischemic tissues. Therefore, the present application aims to identify miRs in the vasculature, which regulate vessel growth and vessel remodelling and may, thus, serve as therapeutic targets in ischemic diseases. Since ageing critically impairs endothelial function, neovascularization and vascular repair, we will specifically identify miRs, which are dysregulated during ageing in endothelial cells and pro-angiogenic progenitor cells, in order to develop novel strategies to rescue age-induced impairment of neovascularization. Beyond the specific scope of the present application, the principle findings may have impact for other diseases, where deregulated vessel growth causes or accelerates disease states.
Max ERC Funding
2 375 394 €
Duration
Start date: 2009-03-01, End date: 2014-02-28
Project acronym ANTEGEFI
Project Analytic Techniques for Geometric and Functional Inequalities
Researcher (PI) Nicola Fusco
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Summary
Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Max ERC Funding
600 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym AP-1-FUN
Project AP-1 (Fos/Jun) Functions in Physiology and Disease
Researcher (PI) Erwin F. Wagner
Host Institution (HI) FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Our research interests lie in breaking new ground in studying mechanism-based functions of AP-1 (Fos/Jun) in vivo with the aim of obtaining a more global perspective on AP-1 in human physiology and disease/cancer. The unresolved issues regarding the AP-1 subunit composition will be tackled biochemically and genetically in various cell types including bone, liver and skin, the primary organs affected by altered AP-1 activity. I plan to utilize the knowledge gained on AP-1 functions in the mouse and transfer it to human disease. The opportunities here lie in exploiting the knowledge of AP-1 target genes and utilizing this information to interfere with pathways involved in normal physiology and disease/cancer. The past investigations revealed that the functions of AP-1 are an essential node at the crossroads between life and death in different cellular systems. I plan to further exploit our findings and concentrate on utilising better mouse models to define these connections. The emphasis will be on identifying molecular signatures and potential treatments in models for cancer, inflammatory and fibrotic diseases. Exploring genetically modified stem cell-based therapies in murine and human cells is an ongoing challenge I would like to meet in the forthcoming years at the CNIO. In addition, the mouse models will be used for mechanism-driven therapeutic strategies and these studies will be undertaken in collaboration with the Experimental Therapeutics Division and the service units such as the tumor bank. The project proposal is divided into 6 Goals (see also Figure 1): Some are a logical continuation based on previous work with completely new aspects (Goal 1-2), some focussing on in depth molecular analyses of disease models with innovative and unconventional concepts, such as for inflammation and cancer, psoriasis and fibrosis (Goal 3-5). A final section is devoted to mouse and human ES cells and their impact for regenerative medicine in bone diseases and cancer.
Summary
Our research interests lie in breaking new ground in studying mechanism-based functions of AP-1 (Fos/Jun) in vivo with the aim of obtaining a more global perspective on AP-1 in human physiology and disease/cancer. The unresolved issues regarding the AP-1 subunit composition will be tackled biochemically and genetically in various cell types including bone, liver and skin, the primary organs affected by altered AP-1 activity. I plan to utilize the knowledge gained on AP-1 functions in the mouse and transfer it to human disease. The opportunities here lie in exploiting the knowledge of AP-1 target genes and utilizing this information to interfere with pathways involved in normal physiology and disease/cancer. The past investigations revealed that the functions of AP-1 are an essential node at the crossroads between life and death in different cellular systems. I plan to further exploit our findings and concentrate on utilising better mouse models to define these connections. The emphasis will be on identifying molecular signatures and potential treatments in models for cancer, inflammatory and fibrotic diseases. Exploring genetically modified stem cell-based therapies in murine and human cells is an ongoing challenge I would like to meet in the forthcoming years at the CNIO. In addition, the mouse models will be used for mechanism-driven therapeutic strategies and these studies will be undertaken in collaboration with the Experimental Therapeutics Division and the service units such as the tumor bank. The project proposal is divided into 6 Goals (see also Figure 1): Some are a logical continuation based on previous work with completely new aspects (Goal 1-2), some focussing on in depth molecular analyses of disease models with innovative and unconventional concepts, such as for inflammation and cancer, psoriasis and fibrosis (Goal 3-5). A final section is devoted to mouse and human ES cells and their impact for regenerative medicine in bone diseases and cancer.
Max ERC Funding
2 500 000 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym ASTRODYN
Project Astrophysical Dynamos
Researcher (PI) Axel Brandenburg
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Advanced Grant (AdG), PE9, ERC-2008-AdG
Summary Magnetic fields in stars, planets, accretion discs, and galaxies are believed to be the result of a dynamo process converting kinetic energy into magnetic energy. This work focuses on the solar dynamo, but dynamos in other astrophysical systems will also be addressed. In particular, direct high-resolution three-dimensional simulations are used to understand particular aspects of the solar dynamo and ultimately to simulate the solar dynamo as a whole. Phenomenological approaches will be avoided in favor of obtaining rigorous results. A major problem is catastrophic quenching, i.e. the decline of dynamo effects in inverse proportion to the magnetic Reynolds number, which is huge. Tremendous advances have been made in the last few years since the cause of catastrophic quenching in dynamos has been understood in terms of magnetic helicity evolution. The numerical tools are now in place to allow for magnetic helicity fluxes via coronal mass ejections, thus alleviating catastrophic quenching. This work employs simulations in spherical shells, augmented by Cartesian simulations in special cases. The roles of the near-surface shear layer, the tachocline, as well as pumping in the bulk of the convection zone are to be clarified. The Pencil Code will be used for most applications. The code is third order in time and sixth order in space and is used for solving the hydromagnetic equations. It is a public domain code developed by roughly 20 scientists world wide and maintained under an a central versioning system at Nordita. Automatic nightly tests of currently 30 applications ensure the integrity of the code. It is used for a wide range of applications and may include the effects of radiation, self-gravity, dust, chemistry, variable ionization, cosmic rays, in addition to those of magnetohydrodynamics. The code with its infrastructure offers a good opportunity for individuals within a broad group of people to develop new tools that may automatically be useful to others.
Summary
Magnetic fields in stars, planets, accretion discs, and galaxies are believed to be the result of a dynamo process converting kinetic energy into magnetic energy. This work focuses on the solar dynamo, but dynamos in other astrophysical systems will also be addressed. In particular, direct high-resolution three-dimensional simulations are used to understand particular aspects of the solar dynamo and ultimately to simulate the solar dynamo as a whole. Phenomenological approaches will be avoided in favor of obtaining rigorous results. A major problem is catastrophic quenching, i.e. the decline of dynamo effects in inverse proportion to the magnetic Reynolds number, which is huge. Tremendous advances have been made in the last few years since the cause of catastrophic quenching in dynamos has been understood in terms of magnetic helicity evolution. The numerical tools are now in place to allow for magnetic helicity fluxes via coronal mass ejections, thus alleviating catastrophic quenching. This work employs simulations in spherical shells, augmented by Cartesian simulations in special cases. The roles of the near-surface shear layer, the tachocline, as well as pumping in the bulk of the convection zone are to be clarified. The Pencil Code will be used for most applications. The code is third order in time and sixth order in space and is used for solving the hydromagnetic equations. It is a public domain code developed by roughly 20 scientists world wide and maintained under an a central versioning system at Nordita. Automatic nightly tests of currently 30 applications ensure the integrity of the code. It is used for a wide range of applications and may include the effects of radiation, self-gravity, dust, chemistry, variable ionization, cosmic rays, in addition to those of magnetohydrodynamics. The code with its infrastructure offers a good opportunity for individuals within a broad group of people to develop new tools that may automatically be useful to others.
Max ERC Funding
2 220 000 €
Duration
Start date: 2009-02-01, End date: 2014-01-31
Project acronym BCCI
Project Bidirectional cortical communication interface
Researcher (PI) Wolfgang Rosenstiel
Host Institution (HI) EBERHARD KARLS UNIVERSITAET TUEBINGEN
Call Details Advanced Grant (AdG), PE7, ERC-2008-AdG
Summary This project aims at establishing bidirectional communication via the cortical areas of the brain. In recent years there have been extensive research efforts for establishing an efferent pathway from the brain by means of cortical recordings to allow patients suffering from amyotrophic lateral sclerosis (ALS), stroke or high spinal cord lesions to interact with their environment (Birbaumer and Cohen, 2007; Wolpaw et al., 2002). As an extension this project will investigate the possibility of an afferent pathway to the brain by means of cortical stimulation, since it is ex-pected that stimulation might help to increase the information transfer rate for the efferent path-way. To achieve this there are two possible stimulation paradigms to be investigated. The first is based on the identification of optimal brain states for communication and the active maintenance of these states by stimulation. Inspired by classical conditioning, the second stimulation paradigm seeks to support and accelerate the rehabilitation process in stroke patients, as well as the learning process needed for the efferent communication pathway in ALS patients. By development of visual cortical prostheses (Schmidt et al., 1996) it became apparent that there are several fundamental problems related to cortical stimulation, which need to be solved before it is possible to evoke well-defined neural responses by stimulation - a prerequisite of the stimulation paradigms mentioned above. To overcome these problems it is envisaged to adapt stimulus parameters based on the current background brain activity by a feedback system in real time. Leveraging prior knowledge from microstimulation studies the feasibility of this approach will be evaluated by simultaneous stimulation and recording from ECoG grids and accompanied by the development of suitable algorithms.
Summary
This project aims at establishing bidirectional communication via the cortical areas of the brain. In recent years there have been extensive research efforts for establishing an efferent pathway from the brain by means of cortical recordings to allow patients suffering from amyotrophic lateral sclerosis (ALS), stroke or high spinal cord lesions to interact with their environment (Birbaumer and Cohen, 2007; Wolpaw et al., 2002). As an extension this project will investigate the possibility of an afferent pathway to the brain by means of cortical stimulation, since it is ex-pected that stimulation might help to increase the information transfer rate for the efferent path-way. To achieve this there are two possible stimulation paradigms to be investigated. The first is based on the identification of optimal brain states for communication and the active maintenance of these states by stimulation. Inspired by classical conditioning, the second stimulation paradigm seeks to support and accelerate the rehabilitation process in stroke patients, as well as the learning process needed for the efferent communication pathway in ALS patients. By development of visual cortical prostheses (Schmidt et al., 1996) it became apparent that there are several fundamental problems related to cortical stimulation, which need to be solved before it is possible to evoke well-defined neural responses by stimulation - a prerequisite of the stimulation paradigms mentioned above. To overcome these problems it is envisaged to adapt stimulus parameters based on the current background brain activity by a feedback system in real time. Leveraging prior knowledge from microstimulation studies the feasibility of this approach will be evaluated by simultaneous stimulation and recording from ECoG grids and accompanied by the development of suitable algorithms.
Max ERC Funding
1 169 400 €
Duration
Start date: 2009-02-01, End date: 2012-10-31